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CYCLES ON CURVES OVER GLOBAL FIELDS OF POSITIVE
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Abstract. Let k be a global field of positive characteristic and σ : X −→ Spec k
a smooth projective curve. We study the zero-dimensional cycle group V (X) =
Ker (σ∗ : SK1(X) → K1(k)) and the one-dimensional cycle group W (X) = Coker (σ∗ :
K2(k) → H0

Zar(X,K2)), addressing the conjecture that V (X) is torsion and W (X)
is finitely generated. The main idea is to use Abhyankar’s Theorem on resolution
of singularities to relate the study of these cycle groups to that of the K-groups of
a certain smooth projective surface over a finite field.

1. Introduction

Let k be a global field of positive characteristic; that is, a field which is finitely

generated and of transcendence degree one over a finite field. Let σ : X −→ Spec k

be a smooth projective curve over k; consider the cycle groups

V (X) = Ker (σ∗ : SK1(X) → K1(k)

W (X) = Coker (σ∗ : K2(k) → H0
Zar(X,K2)).

In studying V (X) and W (X), it is convenient to use the language of higher Chow

groups [Bl3]. Using the identifications CH1(k, 1) ∼= K1(k), CH2(k, 2) ∼= K2(k),

CH2(X, 1) ∼= H1
Zar(X,K2) = SK1(X) and CH2(X, 2) ∼= H0

Zar(X,K2) and compati-

bility of the various maps of relevance, one may characterize these groups solely in

terms of the higher Chow groups (see [Bl1], [R3], [MSEV]) for details):

V (X) = Ker (σ∗ : CH2(X, 1) → CH1(k, 1))

W (X) = Coker (σ∗ : CH2(k, 2) → CH2(X, 2))

The main conjectures concerning these groups may be enunciated thus:
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Conjecture.

• (Bloch) V (X) is a torsion group.

• (Raskind) W (X) is a finitely generated group.

In [R3], Raskind has studied V (X) by using Abhyankar’s Theorem [Ab] on resolution

of singularities for surfaces. Specifically, let k and X be as above, and k0 the prime

field. Choose a smooth projective model C for k over k0 and apply Abhyankar’s

Theorem to deduce the existence of a surface X , smooth and projective over k0,

together with a proper, flat map s : X → C whose fibers are connected and whose

generic fiber is isomorphic to X; it is moreover true that all but finitely many closed

points v ∈ C, the special fiber Xv is smooth. To ease notation later in the paper,

set R = {v ∈ C : Xv is smooth} and S = {v ∈ C : Xv is not smooth}. In this

context, Raskind uses the Sherman exact sequence to prove that V (X) is torsion if

H1
Zar(X ,K2) is torsion. The two main results of this paper extend Raskind’s result

and furnish an analogous statement for W (X):

Theorem.

• V (X) is torsion ⇔ K1(X ) is torsion.

• W (X) is finitely generated ⇔ K2(X ) is torsion.

This paper also contains a result giving a rough description of the torsion subgoup

of V (X). Moreover, analogous to Raskind’s treatment of the number field case [R3],

it is proved that W (X)/n is finite for any nonzero integer n, giving further evidence

towards the above conjecture.

Throughout this paper an algebraic scheme is a scheme of finite type over a field k,

while a variety is an integral algebraic scheme. An integral algebraic scheme is called

a curve if it is one-dimensional or a surface if it is two-dimensional. If x ∈ X is

any point, the residue field at x is denoted k(x); if X happens to be irreducible, the

residue field at the generic point of X (i.e. the function field) is written k(X). If

X −→ Spec k is an algebraic scheme and L/k is a field extension, we write XL for

the base extension X ×Spec k
Spec L.

For any scheme X, the notation K∗(X) refers to the algebraic K-theory of X. If

X is an algebraic scheme, CH∗(X) denotes the Chow ring of X and CH∗(X, ·) the

higher Chow groups of X. We often write CH∗(k, ·) instead of CH∗(Spec k, ·). If G

is an abelian group and n > 0 an integer, we use the shorthand nG for the n-torsion

subgroup of G and G/n for the quotient G/nG. The group of nth roots of unity in

(a field) k is denoted µn(k).
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2. The K-theory of X

To motivate the study of the groups V (X) and W (X), consider the problem of de-

scribing Ki(X) for i ≥ 0. It is well known that K0(X)⊗Q ∼= Q⊕Q⊕ (Pic(X)⊗Q);

however, little is known in general when i > 0. By using Abhyankar’s construction, we

may try to reduce the study of cycles on X, the generic fiber of the map s : X −→ C

to the study of cycles on X itself and cycles on the various special fibers Xv. To make

any progress, though, we either have to make some fairly restrictive assumptions on

X or assume the following conjecture of Parshin.

Conjecture 2.1. Let Y be a smooth projective variety over a finite field. Then the

groups Ki(Y ) are torsion when i > 0.

We remark in passing that a conjecture attributed to Bass predicts that all the groups

Ki(Y ) for i ≥ 0 are finitely generated; together, the two conjectures imply that Ki(Y )

is actually finite for i > 0.

Probably the most significant progress towards verification of Parshin’s conjecture

has been made by Soulé [Sou]. For any field, F he describes a class A(F ) of smooth

projective varieties, closed under products and containing all curves over F and uni-

rational varieties of degree ≥ 3. Soulé then proves:

Theorem 2.2. ([Sou], Théorème 6) Suppose F is a finite field. If Y is in the class

A(F ), then K0(Y ) is finitely generated, and if dim Y ≤ 3, then Km(Y ) has finite

exponent for all m ≥ 1.

Conjecturally, of course, A(F ) contains all smooth projective varieties over F .

In dimension 1, the structure of K1 is understood completely:

Theorem 2.3. (Nestler, [Ne], 3.1 Theorem 3) Let Y be a smooth projective reduced

one-dimensional algebraic scheme over a finite field with r irreducible components.

Then K1(Y ) ∼= k∗ ⊕ (k∗)r.

Because some of the fibers Xv may not be smooth, we need the following:

Lemma 2.4. Let F be a finite field and Γ a (not necessarily smooth) projective

curve over F . Then K0(Γ) and K1(Γ) are finitely genereated, and Km(Γ) is of finite

exponent when m ≥ 2.
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Proof.

Each of these statements follows from the localization sequence for algebraic K-theory

[Qu2] by comparing Γ to its normalization. Precisely, let ν : Γ̃ −→ Γ be the nor-

malization of Γ and let U ⊆ Γ be an open subset such that ν|ν−1(U) : ν−1(U) −→ U

is an isomorphism. Set Z = Γ − U , Ũ = ν−1(U) and Z̃ = ν−1(Z). Then we have

the following commutative diagram with exact rows, in which the vertical arrows are

induced by ν.

. . . // Km(Z̃) //

��

Km(Γ̃) //

��

Km(Ũ)

∼=
��

// Km−1(Z̃) //

��

. . .

. . . // Km(Z) // Km(Γ) // Km(U) // Km−1(Z) // . . .

Note that Z (respectively Z̃) is a finite set of closed points. Thus, K0(Z) (resp.

K0(Z̃)) is a finitely generated free abelian group; using Quillen’s calculation of the

K-theory of finite fields [Qu1], we see that Kr(Z) (resp. Kr(Z̃)) is a finite group for

all r ≥ 1. The conclusion follows easily from these remarks and the characterization

of the K-groups of (the smooth projective curve) Γ̃ from Theorems 2.2 and 2.3.

The main result of relevance to us is the following:

Proposition 2.5. Assume Parshin’s conjecture. Then Km(X) is a torsion group for

m ≥ 3, and K2(X) has finite rank.

Proof.

By Parshin’s conjecture, the K-groups Km(X ) are torsion for m ≥ 1. Localization

gives an exact sequence:

. . . −→ Km(X ) −→ Km(X) −→
⊕
v∈C

Km−1(Xv) −→

If m ≥ 3, then all the groups Km−1(Xv) are torsion groups by Lemma 2.4; therefore

Km(X), being sandwiched between two torsion groups in the exact sequence, must

itself be torsion. If m = 2, then the groups K1(Xv) corresponding to smooth fibers are

torsion by Theorem 2.3; the groups corresponding to singular fibers have finite rank

by Lemma 2.4. Since there are only finitely many v of the latter type, we see that

K2(X) is sandwiched between the torsion group K2(X ) and the group
⊕

v∈C K1(Xv)

of finite rank; hence it, too, has finite rank.

The connection between the K-theory of X and the groups V (X) and W (X) is

apparent from the well-known “Riemann-Roch” theorem of Bloch [Bl3], which will

be used in later sections:

Theorem 2.6. Let Y be an algebraic scheme. Then there is an isomorphism
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Gn(Y )⊗Q ∼=
⊕

i

CH i(Y, n)⊗Q.

where Gn(Y ) are the higher K-groups of the category of coherent sheaves on Y as

defined by Quillen [Qu2].

In particular, if Y is smooth, then

Kn(Y )⊗Q ∼=
⊕

i

CH i(Y, n)⊗Q.

As an example of Shapiro ([Sha], Prop. 2) shows, the analogue of this theorem with

integral coefficients is not valid; the integral version of this theorem is the so-called

Bloch-Lichtenbaum spectral sequence ([BL] and [FS]), the Riemann-Roch theorem

being its degenerate form upon tensoring with Q.

Returning to the context of the discussion, Theorem 2.6 explains why one cannot

hope for K1(X) to be torsion or even of finite rank:

K1(X)⊗Q ∼=
⊕

i

CH i(X, 1)⊗Q.

When i > 2 or i < 0, CH i(X, 1) = 0 for reasons of dimension. Furthermore, we have

CH0(X, 1) = 0, and CH1(X, 1) ∼= k∗ by [Bl3], Theorem 6.1. Thus K1(X)⊗Q already

contains a (clearly identified) subgroup of infinite rank. Moreover, the conjecture

that V (X) is torsion implies that CH2(X, 1) ⊗ Q ∼= k∗ ⊗ Q, and so K1(X) ⊗ Q ∼=
(k∗ ⊕ k∗)⊗Q.

3. The group V (X)

Our first goal is to prove:

Theorem 3.1. V (X) is torsion ⇔ K1(X ) is torsion.

Observe that by the Riemann-Roch Theorem (Theorem 2.6), we have

K1(X )⊗Q ∼=
⊕

i

CH i(X , 1)

Since X is a surface, CH i(X , 1) = 0 when i > 3 or i ≤ 0 for reasons of dimension.

Moreover, CH0(X , 1) = 0; also, CH1(X , 1) = k∗0, which is a torsion group, and

CH3(X , 1) is a torsion group by [Ak2], Proposition 4.2. Thus, to prove Theorem 3.1,

it suffices to show that V (X) is torsion if and only if CH2(X , 1) = H1
Zar(X ,K2) is

torsion.
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We begin with a result of Raskind whose proof has been simplified somewhat by using

the language of higher Chow groups; together with the discussion of the previous

paragraph, this takes care of the “if” statement of the theorem.

First, we give a new construction of an (extension of an) exact sequence due to

Sherman [She].

Proposition 3.2. There is an exact sequence

0 −→ H0
Zar(X ,K2) −→ H0

Zar(X,K2) −→
⊕
v∈C

CH1(Xv, 1) −→ H1
Zar(X ,K2) −→

−→ H1
Zar(X,K2) −→

⊕
v∈C

Pic Xv −→ CH2(X ) −→ 0

Proof.

This is simply the localization sequence for higher Chow groups, taking into ac-

count the facts that for any quasiprojective algebraic scheme Y , CH1(Y, 2) = 0 and

CH2(Y, 0) = CH2(Y ) [Bl3], and for Y smooth, CH1(Y, 0) ∼= CH1(Y ) ∼= Pic(Y )

([Bl3]), CH2(Y, 2) ∼= H0
Zar(Y,K2), and CH2(Y, 1) ∼= H1

Zar(Y,K2) as described in the

introduction.

Proposition 3.3. (Raskind, [R3] Lemma 2.2) If H1
Zar(X , 2) is a torsion group, then

V (X) is a torsion group. In particular, if X is in the class A(k0), then V (X) is a

torsion group.

Remark. Raskind also shows that if H1
Zar(X , 2) is not a torsion group, then V (X)

contains an infinite divisible subgroup, although we will not make use of this result.

Proof.

Covariant functoriality of the higher Chow groups with respect to the (proper) map

s : X −→ C gives the commutative diagram in which the rows are exact, coming

from the various localization sequences: (to ease notation, the vertical maps induced

by s are all labeled s∗, although they are obviously different maps)⊕
v∈C CH1(Xv, 1)

α //

s∗

��

H1
Zar(X ,K2)

β //

s∗

��

H1
Zar(X,K2)

γ //

s∗

��

⊕
v∈C Pic Xv

s∗
��

0 // k∗0 // k∗ //
⊕

v∈C Z
Suppose c ∈ V (X) is some element. By commutativity of the middle square, it follows

that

γ(c) ∈ Ker (s∗ :
⊕
v∈C

Pic Xv −→
⊕
v∈C

Z) ∼=
⊕
v∈C

Ker (s∗ : Pic Xv −→ Z)).
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Since all the fibers Xv are connected, the group on the right is a torsion group; thus,

γ(c) is torsion and hence some multiple of c is in Im β. However, since H1
Zar(X ,K2) is

torsion, it follows immediately that Im β is torsion. Thus c itself is a torsion element.

Corollary 3.4. Suppose X = Γ×k0 k, where Γ is a smooth projective curve over k0.

Then V (X) is a torsion group.

Proof.

In this case, X ∼= Γ ×k0 C; by Theorem 2.2, K1(X) is a torsion group hence by

Riemann-Roch the same is true of H1
Zar(X ,K2).

We now turn our attention to the “only if” statement of Theorem 3.1.

Recall that R is the set of v ∈ C such that the (special) fiber Xv is smooth. For such

v, we have CH1(Xv, 1) ∼= k(v)∗ [Bl3]. In general, we have:

Lemma 3.5. Let v ∈ C be a closed point. Then CH1(Xv, 1) is a finitely generated

group.

Proof.

For convenience of notation, set V = Xv and let ν : Ṽ −→ V denote the normalization

map. Choose an open set U ⊆ V such that ν|ν−1(U) : ν−1(U) −→ U is an isomorphism

and set Z = V −U , Z̃ = Ṽ −ν−1(U). Then localization gives a commutative diagram

with exact rows; we are implicitly using the fact that CH0(Y, 1) = 0 vanishes for any

algebraic scheme Y .

0 // CH1(Ṽ , 1) //

ν∗

��

CH1(ν−1(U), 1) //

∼=
��

⊕
z̃∈Z̃ Z //

ν∗
��

0

0 // CH1(V, 1) // CH1(U, 1) //
⊕

z∈Z Z // 0

Since Ṽ is smooth, we have CH1(Ṽ , 1) ∼= k(v)∗ which is finite; observing that the sets

Z and Z̃ are finite allows us to conclude that that CH1(V, 1) is finitely generated.

The following result on the structure of H1
Zar(X,K2) will be of crucial importance:

Lemma 3.6. (Gros / Suwa, [GS] Theorem 4.19) Let F be a finite field, p = char F ,

and Y a smooth projective variety over F . There is an exact sequence:

0 −→ T −→ H1
Zar(Y,K2) −→

⊕
l 6=p

H3
et(Y,Zl(2)) −→ 0

in which T is a uniquely divisible group and the group on the right is finite.

Proposition 3.7. With notation as in the Sherman exact sequence, Im α = Ker β

is a finitely generated group.
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Proof.

We now use contravariant functoriality of the higher Chow groups with respect to the

morphism s : X −→ C. Localization once again gives a commutative diagram with

exact rows: (again, the vertical maps are all labelled s∗ for the sake of notational

simplicity)

CH2(X, 2) //
⊕

v∈C CH1(Xv, 1)
α // CH2(X , 1)

β // CH2(X, 1)

CH2(k, 2) //

s∗

OO

⊕
v∈C CH1(k(v), 1)

α0 //

s∗

OO

CH2(C, 1) //

s∗

OO

0

s∗

OO

Observe that

Im α =
∑
v∈R

α(CH1(Xv, 1)) +
∑
v∈S

α(CH1(Xv, 1))

However, for v ∈ R, s∗ is an isomorphism, so α(CH1(Xv, 1)) = α(s∗(CH1(k(v), 1)))

= s∗(α0(CH1(k(v), 1))). This, however, is contained in s∗(CH2(C, 1)), which is finite

in view of the isomorphism CH2(C, 1) ∼= k∗0 ([Ak2], Theorem 3.1).

Now for the (finitely many) v ∈ S, it only remains to observe that CH1(Xv, 1) is

finitely generated by Lemma 3.5; hence the same must be true of α(CH1(Xv, 1)).

Proof of Theorem 3.1.

Assume that V (X) is torsion.

Commutativity of the middle square of the diagram appearing in the proof of Propo-

sition 3.3 shows that s∗(Im β) is contained in k∗0, which is a finite group. Hence, if

m = |k∗0|, then m(Im β) ⊆ V (X) and so Im β is a torsion group. Because Ker β

is finitely generated by Proposition 3.7, it follows that H1
Zar(X ,K2) has finite rank.

However, Lemma 3.6 implies that H1
Zar(X ,K2) contains a uniquely divisible subgroup

T , and in order for this subgroup to be nontrivial, it must have infinite rank. Thus

T = 0 and so H1
Zar(X ,K2) is finite, hence torsion.

We conclude this section by giving a partial description of the torsion subgroup of

V (X), which will typically turn out to be quite large. The following result of Colliot-

Thélène, Sansuc, and Soulé will be helpful:

Theorem 3.8. ([CTSS], Theorem 3.7)

Let Y be a smooth projective variety over a finite field. Then the torsion subgroup of

CH2(Y ) is finite.

It is worth mentioning that the above result may also be deduced from a theorem of

Kato and Saito [KS] which states that for any such Y as above, CH0(Y ) ∼= Z⊕A0(Y ),

where A0(Y ) is a finite group.
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Proposition 3.9. Let r = rk(Im α). There exists an integer N such that for all m

prime to N , there is an exact sequence:

0 −→ (Z/mZ)r −→ H1
Zar(X,K2) −→

⊕
v∈C

mPic Xv −→ 0

Proof.

We first examine the end of the Sherman exact sequence (Proposition 4.1):

H1
Zar(X ,K2)

β→ H1
Zar(X,K2)

γ→ ⊕v∈CPic Xv
ε→ CH2(X ) → 0

Multiplication by m gives a map from the exact sequence

0 −→ Ker ε −→ ⊕v∈CPic Xv
ε−→ CH2(X ) −→ 0

to itself; thus the snake lemma yields an exact sequence

0 → m(Ker ε) → ⊕v∈C m(Pic Xv) →m CH2(X ) → (Ker ε)/m

→ ⊕v∈CPic Xv/m → CH2(X )/m −→ 0

By Theorem 3.8, the third term is zero for m prime to the order of the torsion

subgroup of CH2(X ). Hence for such m there is an isomorphism:

m(Ker ε) ∼= ⊕v∈C m(Pic Xv)

Furthermore, the exact sequence

0 −→ Ker β −→ H1
Zar(X ,K2) −→ Ker γ −→ 0

gives rise to another exact sequence:

0 → m(Ker β) → mH1
Zar(X ,K2) → m(Ker γ) → (Ker β)/m

→ H1
Zar(X ,K2)/m → (Ker γ)/m −→ 0

By Lemma 3.6, it follows that the second and fifth terms are 0 for m prime to some

sufficiently large integer. Hence, for such m, we have:

m(Ker γ) ∼= (Ker β)/m and (Ker γ)/m = 0.

Once again, the short exact sequence

0 −→ Ker γ −→ H1
Zar(X,K2) −→ Ker ε −→ 0

induces a long exact sequence:
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0 → m(Ker γ) → mH1
Zar(X,K2) → m(Ker ε) → (Ker γ)/m

→ H1
Zar(X,K2)/m → (Ker ε)/m −→ 0

Using the isomorphisms noted, the above condenses to a short exact sequence:

0 −→ (Im α)/m −→ mH1
Zar(X,K2) −→ ⊕v∈C m(PicXv) −→ 0

Finally, taking m to be relatively prime to the order of the torsion subgroup of Im α,

we conclude that (Im α)/m ∼= (Z/mZ)r, finishing the proof of Proposition 3.9.

Remark.

Since V (X) = Ker (σ∗ : H1
Zar(X,K2) → k∗), there is always an exact sequence

0 −→ mV (X) → mH1
Zar(X,K2) → mIm σ∗

(If X has a k-rational point, then the rightmost map is in fact split surjective.) In

any case, since mIm σ∗ ⊆ mk∗ = µm(k) is finite, it is clear that mV (X) is typically

quite large, too.

4. The group W (X)

Raskind [R1] has studied the group W (X) = H0
Zar(X,K2)/K2k when k is a number

field. The restriction to characteristic zero is probably due to the fact that the tools

he used (explicated in detail in [R2]) were not yet available in positive characteristic

at the time of writing. As in the previous section, we work in the setting of positive

characteristic, using different techniques to prove an analogue of Raskind’s “weak

Mordell-Weil theorem for W (X)”, that is, finiteness of W (X)/n for any integer n.

We will need another result of Gros and Suwa, the analogue of Lemma 3.6 for

H0
Zar(Y,K2).

Lemma 4.1. (Gros / Suwa, [GS] Theorem 4.11)

Let F be a finite field of characteristic p and Y a projective variety, smooth over F .

Then there is an exact sequence:

0 −→ T −→ H0
Zar(Y,K2) −→

⊕
l 6=p

H2
et(Y, Zl(2)) −→ 0

in which the group on the right is finite and T is a uniquely divisible group.

Ultimately, we will need a result of Bass and Tate which appears in a different guise

in [BT]:
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Theorem 4.2. (Bass / Tate, [BT] II. Theorem 2.1)

Let Z be a curve, smooth and projective over a finite field. Then CH2(Z, 2) is a finite

group.

(Bass and Tate prove that the “tame kernel” Ker(∂ : KM
2 k(Z) −→

⊕
v∈Z KM

1 k(v))

is a finite group; an easy argument using localization sequences identifies this group

with CH2(Z, 2).)

Proposition 4.3. (“Weak Mordell-Weil Theorem for W (X)) For all nonzero integers

n, the group W (X)/n is finite.

Proof.

From the contravariant structure of higher Chow groups, we have a commutative

diagram with exact rows. The vertical maps are induced by s via contravariant

functoriality; we give them different names to distinguish among them in the sequel.

0 // CH2(X , 2)
f // CH2(X, 2)

g // ⊕vCH1(Xv, 1)
α // CH2(X , 1)

0 // CH2(C, 2)
f0 //

s∗f

OO

CH2(K, 2)
g0 //

s∗g

OO

⊕vCH1(k(v), 1)
α0 //

s∗α=⊕vs∗α,v

OO

CH2(C, 1)

s∗β

OO

By the snake lemma, there is a long exact sequence:

0 → Ker (s∗ : Im g0 → Im g) → Ker s∗α → Ker (s∗ : Im α0 → Im α) →

→ Coker (s∗ : Im g0 → Im g) → Coker s∗α → Coker (s∗ : Im α0 → Im α) → 0

Now, for each v ∈ C, we have k(v)∗ ↪→ CH1(Xv, 1), even if Xv is not smooth. Since

it is clear that this inclusion coincides with the map s∗α,v : k(v)∗ −→ CH1(Xv, 1), it

follows that Ker s∗α = 0. Thus, Ker (s∗ : Im g0 −→ Im g) = 0.

Similarly, there is another long exact sequence:

0 −→ Ker s∗f −→ Ker s∗g −→ Ker (s∗ : Im g0 −→ Im g) −→
−→ Coker s∗f −→ Coker s∗g −→ Coker (s∗ : Im g0 −→ Im g) −→ 0

which collapses to

0 −→ Coker s∗f −→ W (X) −→ Coker (s∗ : Im g0 −→ Im g) −→ 0

We claim that the last term of this short exact sequence is finitely generated. By the

first long exact sequence, it suffices to show that the terms Ker (s∗ : Im α0 −→ Im α)
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and Coker s∗α are finitely generated. In the original ladder diagram, the map α0

is surjective; this is because the next term in the localization sequence would be

CH2(K, 1) = 0. Thus Im α0 = CH2(C, 1) ∼= k∗0 ([Ak2], Theorem 3.1) which is a

finite group. Furthermore, for v ∈ R, sα,v is an isomorphism; thus, Coker s∗α is

finitely generated by Lemma 3.5.

Finally, we examine the six-term exact sequence induced by multiplication by n on

the last short exact sequence above:

0 −→ nCoker s∗f −→ nW (X) −→ n(Coker s∗ : Im g0 −→ Im g) −→

−→ Coker s∗f/n −→ W (X)/n −→ (Coker s∗ : Im g0 −→ Im g)/n −→ 0

Noting that Coker s∗f/n is finite by Lemma 4.1, the desired assertion follows.

We remark that finiteness of nCoker s∗f also follows from Lemma 4.1, thus yielding a

proof of the finiteness of nW (X). However, a much more general result implies that

the entire torsion subgroup of W (X) is finite:

Theorem 4.4. (Raskind / Colliot-Thélène, [CTR] Prop. 1.15) Let L be a field finitely

generated over its prime field and Y a projective variety, smooth over L. Then the

torsion subgroup of H0
Zar(Y, 2)/K2L is finite.

We are now in a position to prove the main result:

Theorem 4.5. W (X) is finitely generated if and only if K2(X ) is finite.

Proof.

Following the proof of Theorem 3.1, first apply the Riemann-Roch Theorem to deduce

K2(X )⊗Q ∼=
⊕

i

CH i(X , 2)

For reasons of dimension, CH i(X , 2) = 0 for i ≥ 4 or i < 0. Moreover, CH0(X , 2) =

0, CH1(X , 2) = 0, CH3(X , 2) is a torsion group by [Ak2], Prop. 4.2 and CH4(X , 2) =

0 by [Ak1], Cor. 7.1. Hence it suffices to prove that W (X) is finitely generated if and

only if CH2(X , 2) is torsion.

From the proof of Proposition 4.3, there is an exact sequence:

0 −→ Coker s∗f −→ W (X) −→ F −→ 0

in which F is a finitely generated group. Thus W (X) is finitely generated if and

only if the same is true of Coker s∗f . Now CH2(C, 2) is finite by Theorem 4.2, so

Coker s∗f = CH2(X , 2)/s∗f (CH2(C, 2)) is finitely generated if and only if CH2(X , 2)
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is finitely generated. Finally, Lemma 4.1 shows that finite generation of CH2(X , 2)

is equivalent to its finiteness.

Corollary 4.6. Suppose X = Γ×k0 k, where Γ is a smooth projective curve over k0.

Then W (X) is finitely generated.

5. Extending the constant field

The description of the finiteness of W (X)/n as a “weak Mordell-Weil theorem”

prompts one to consider whether or not W (X) is finitely generated when X is a

curve over some field k for which the ordinary Mordell-Weil theorem holds – that is,

for which the group A(k) of k-rational points on an abelian variety is finitely gener-

ated. In this section, we show that if k̄0 is the algebraic closure of a finite field and

kx is a finitely generated field of transcendence degree 1 over k0 (so that the ordinary

Mordell-Weil theorem holds for kc), there are examples of curves X such that W (X)

is not finitely generated. We also study the group V (X) for these fields.

Let i : L1 ↪→ L2 be a finite extension of fields. There are functorial maps V (X)
i∗→

V (XL) and V (X)
i∗→ V (X) associated to the (flat and proper) morphism XL −→ X

induced by base change; the projection formula for higher Chow groups then shows

that i∗ ◦ i∗ is simply multiplication by the field degree [L : k]. Thus, to show that

V (X) is torsion, it is sufficient to show that V (XL) is torsion for any finite extension

L/k. A standard argument using direct limits shows that it suffices to prove that

V (Xk̄) is torsion, where k̄ is an algebraic closure of k. Furthermore, Raskind ([R3],

Lemma 1.1) has proved that V (Xk̄) is uniquely divisible, so in fact it suffices to show

that V (Xk̄) = 0.

The disadvantage of working with Xk̄ is that one cannot apply Abhyankar’s Theorem.

As a consolation, one might extend the constant field k0 to an algebraic closure k̄0

and work with kc = kk̄0; the generic fiber of the map sk̄0
: Xk̄0

−→ Ck̄0
obtained by

base extension is then Xc = X×k kc. Just as in the case of a finite constant field, one

may apply the localization sequence to study V (Xc); however, the finiteness results of

Lemma 3.6 and Theorem 3.8 no longer hold. For instance, even when Xk̄0
is a product

Γ×Γ′ of curves over k̄0, H1
Zar(Xk̄0

,K2) ∼= CH2(Xk̄0
, 1) contains CH1(Γ, 1) ∼= k̄0

∗
which

is an infinite (torsion) group.

Nonetheless, it is possible to make a few observations concerning V (Xc). Since kc is

finitely generated of transcendence degree 1 over the algebraically closed field k̄0, we

see that every algebraic extension L/kc has cohomological dimension ≤ 1, and hence

for any finite extensions M ⊇ L ⊇ kc, the field norm NM/L : M∗ −→ L∗ is surjective.

We apply this principle in the following:
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Proposition 5.1. The group V (Xc) is divisible.

Proof.

Fix a nonzero integer n. The group V (Xc) ⊆ CH2(Xc, 1) is generated by elements of

the form NL/k(z · a), in which z ∈ A0(XL) = Ker (deg : CH0(XL) → Z) ⊆ CH1(XL),

a ∈ L∗ ∼= CH1(L, 1) for some finite extension L/k, · is the intersection product on

higher Chow groups, and NL/k is the covariant map on higher Chow groups. Noting

that A0(Xk̄) is divisible by a result of Bloch ([Bl1], Lemma 1.3), choose an extension

i : L ↪→ M such that i∗z = ny for some y ∈ A0(XM) and select b ∈ M∗ such that

NM/Lb = a. Then by the projection formula,

NL/k(z · a) = NL/k(z ·NM/Lb) = NL/kNM/L(i∗z · b) = nNM/k(y · b)

We remark that this result follows directly from the interpretation of V (Xc) as the

generalized Milnor K-group K(k; J ;Gm) in which J is the Jacobian variety of the

curve Xc and Gm is the mutiplicative group scheme. (cf. [Som], Theorem 2.1 and

[Ak3], Theorem 3.1)

We now turn our attention to the group W (Xc). The rest of the discussion is devoted

to the exposition of an example illustrating that this group is not always finitely

generated.

Proposition 5.2. Let C be a smooth projective curve over k0 of genus g and X =

Ck(C). If g > 0, then W (Xc) is not finitely generated.

Note that in this case X = C ×k0 C. For convenience of notation, set C̄ = C ×k0 k̄0.

Thus X ×k0 k̄0
∼= C̄ ×k̄0

C̄.

For the proof, we will need the following result of Colliot-Thélène and Raskind, which

was, historically, the precursor of Lemma 4.1:

Lemma 5.3. (Colliot-Thélène, Raskind [CTR]) Let F be a separably closed field and

Y a smooth proper connected variety over F . Then there is an exact sequence

0 −→ D −→ H0
Zar(Y,K2) −→

⊕
l 6=p

lH
2
et(Y,Zl(2)) −→ 0

in which D is divisible prime to the characteristic of F and the group on the right is

finite.

Furthermore, for l 6= p and any m ≥ 0, there is a natural isomorphism

lmPic0(Y )⊗ µlm
∼=→ lmD.
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Proof of Proposition 5.2

Let π : C̄ ×k̄0
C̄ be the first projection map. Then the map π∗ : CH2(C̄, 2) −→

CH2(C̄ ×k̄0
C̄, 2) is a split injection; hence there is an exact sequence:

0 → nCH2(C̄, 2)
π∗→ nCH2(C̄ ×k̄0

C̄, 2) → nCoker π∗ → 0

We claim that nCoker π∗ is nonzero for infinitely many n. Now if n is a prime

power relatively prime to p, the order of
⊕

l 6=p lH
2
et(C̄,Zl(2)), and the order of⊕

l 6=p lH
2
et(C̄×k̄0

C̄,Zl(2)) then by Lemma 5.3 we have nCH2(C̄, 2) ∼= (Z/nZ)2g⊗µn

whereas nCH2(C̄ ×k̄0
C̄, 2) ∼= (Z/nZ)4g ⊗ µn. Therefore

nCoker π∗ 6= 0 for all such n.

Finally, by reasoning identical to that used in the proof of Proposition 4.3, there is

an exact sequence

0 −→ Coker π∗ −→ W (Xc) −→ A −→ 0

for some group A; this shows that nCoker π∗ injects into nW (Xc) whence our con-

clusion.
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