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Abstract

Let G be a quasigroup. Associativity of the operation on G can be expressed

by the symbolic identity RxLy = LyRx of left and right multiplication maps;

likewise, commutativity can be expressed by the identity Lx = Rx. In this

article, we investigate symmetric linear identities: these are identities in left and

right multiplication symbols in which every indeterminate appears exactly once

on each side, and whose sides are mirror images of each other. We determine

precisely which identities imply associativity and which imply commutativity,

providing counterexamples as appropriate. We apply our results to show that

there are exactly eight varieties of quasigroups satisfying such identities, and

determine all inclusion relations among them.

1 Introduction

A quasigroup is a nonempty set G, equipped with a binary operation (written as

juxtaposition), in which the left multiplication maps La : G → G, x 7→ ax and the

right multiplication maps Ra : G → G, x 7→ xa are bijective for all a ∈ G. The

group M(G) generated by these maps (under function composition) is called the

multiplication group of G, and is a subgroup of the group P (G) of permutations of

G. For more generalities on quasigroups, see [10].

It is well-known that an associative quasigroup is in fact a group. Thus, it is natural

to ask: which identities, if they hold in a quasigroup, imply associativity? Although

this question has received considerable attention in the literature � and recent years

have seen greater progress, thanks largely to the advent of automatic theorem-provers
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(see, for example, [8], [9]) � it is probably too broad a question to be treated in full

generality. A sharpening of this question was considered by Niemenmaa and Kepka

in [7], who asked: which linear identities � identities in which each indeterminate

appears exactly once on each side � imply associativity? They showed that for every

n ≥ 3, the �generalized associativity� identity

In : x1(x2(. . . (xn−1xn) . . .)) = ((. . . (x1x2) . . .)xn−1)xn (1)

is equivalent to associativity for division groupoids. A key insight in their proof

is to rewrite In in terms of left and right multiplication maps, working � to the

extent possible � with maps rather than elements. This approach was exploited

by the present author [1] to show that any division groupoid satisfying the identity

Lx1Rx2 · · ·Lx2n−1Rx2n = Rx2nLx2n−1 · · ·Rx2Lx1 must be an abelian group. Considering

that common identities such as the associative law (xa)y = x(ay) and the commu-

tative law xa = ax may be expressed as identities of multiplication operators by the

(respective) formulas LxRy = RyLx and Lx = Rx, it is perhaps natural to de�ne an

identity of operators to be linear if each symbol appears exactly once on each side

of the de�ning equation, and then to ask which linear identities of operators imply

associativity (or commutativity). Of course, not every linear identity (in the sense

de�ned above) can be thus obtained; nevertheless, the ones which do constitute an

interesting subfamily of linear identities which is more easily studied than the whole.

In this article, we study a further restriction of the problem to symmetric linear

identities: these are identities in which the two sides of the de�ning equation are

mirror images of each other. The simplest nontrivial examples are the associative

law LxRy = RyLx and the identities LxLy = LyLx and RxRy = RyRx. We answer

completely the questions of which such identities imply commutativity, and which

imply associativity. Furthermore, we give a complete classi�cation of varieties of

quasigroups de�ned by all such identities. Questions of a similar sort � for di�erent

families of identities � have been studied by Krapeº (see [4], [5]). There are also

many papers in the literature (for example, [2] and [3]) which are concerned with

functional equations on quasigroups. These papers use terminology and formalism

super�cially similar to that used in the present article; however, their focus is primar-

ily on �nding operations that satisfy functional equations of a prescribed type, rather

than classifying the varieties of quasigroups de�ned by a family of equations.

In preparation for stating our results, we introduce some notation and terminology

which will be maintained throughout the article. Let X be a countably in�nite set of

independent indeterminates. De�ne the sets of left multiplication symbols
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L = {Lx : x ∈ X} and right multiplication symbols R = {Rx : x ∈ X}, and let

S = L ∪ R. The handedness of a symbol φ ∈ S, denoted h(φ), is de�ned to be L if

φ ∈ L or R if φ ∈ R. If we wish to emphasize that x ∈ X is the (unique) indeterminate

appearing in the symbol φ, then we write φ(x) instead of φ. A word in S is a formal

expression W = φ1 · · ·φd, where d ≥ 0 and φi ∈ S for 1 ≤ i ≤ d; we denote the

empty word by 1 and the set of all words in S by S∗. We write W = W (x1, . . . , xm)

to express the fact that x1, . . . , xm are the (distinct) indeterminates appearing in W .

We call d the length of W and de�ne the transpose of W by W t = φd · · ·φ1. A word

W is called balanced if one element of {φ1, φd} is from L and the other is from R.
Likewise, W is called heterogeneous if the symbols in W are drawn from both L and

R, or homogeneous otherwise. An alternating word is a word W = φ1 · · ·φd in which

φi is a left multiplication symbol when i is odd and a right multiplication symbol

when i is even (or vice versa). Finally, W is a palindrome if for every i, 1 ≤ i ≤ d,

φi and φd+1−i are either both in L or both in R. Note that an alternating word is a

palindrome if and only if it has odd length.

We also need some notation to describe the process of substituting elements of a

�xed groupoid G for the indeterminates in a word W ∈ S∗ to obtain a map from G

to itself. One might think of this process as realizing an abstract word in left and

right multiplication symbols as an actual composition of left and right multiplication

maps in G. Speci�cally, if φ = φ(x) ∈ S, then we write φ(a) to mean La if h(φ) = L

or Ra if h(φ) = R. More generally, if W = W (x1, . . . , xd) = φ1(x1) · · ·φd(xd) ∈ S∗

and a1, . . . , ad ∈ G, we writeW (a1, . . . , ad) to mean the composition φ1(a1) · · ·φd(ad).

Although there are no indeterminates appearing in the empty word 1, we stipulate

that its realization (under any substitution) be the identity map 1G.

An identity (in S∗) is a statement I : W1 = W2, where W1,W2 ∈ S∗ are words.

Such an identity is called linear if every indeterminate present appears exactly once

in each of W1 and W2. This condition necessitates that W1 and W2 have the same

length, which we call the length of I. By extension, we call an identity heterogeneous

if it involves both left and right multiplication symbols or homogeneous otherwise.

Likewise, an identity is alternating (palindromic) if both sides are alternating (respec-

tively, palindromes). Finally, an identity is symmetric if it takes the form W = W t

for some word W ; such an identity is called balanced if W is balanced. Since alternat-

ing symmetric identities will be of key importance in our results, we reserve certain

notation for them. For n ≥ 2, we de�ne:

Alt(2n− 1, L) : Lx1Rx2Lx3 · · ·Lx2n−3Rx2n−2Lx2n−1 = Lx2n−1Rx2n−2Lx2n−3 · · ·Lx3Rx2Lx1

Alt(2n−1, R) : Rx1Lx2Rx3 · · ·Rx2n−3Lx2n−2Rx2n−1 = Rx2n−1Lx2n−2Rx2n−3 · · ·Rx3Lx2Rx1
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Alt(2n) : Lx1Rx2Lx3 · · ·Rx2n−2Lx2n−1Rx2n = Rx2nLx2n−1Rx2n−2 · · ·Lx3Rx2Lx1 .

Similarly, we de�ne the left homogeneous identities

LHOn : Lx1 · · ·Lxn = Lxn · · ·Lx1

and the right homogeneous identities

RHOn : Rx1 · · ·Rxn = Rxn · · ·Rx1 .

Strictly speaking, the de�nitions above correspond to families of alternating identities,

since there are many possible choices of indeterminates from X . In the interest of

convenience, though, we will abuse terminology and refer to particular members of

these families as Alt(2n− 1, L), etc.

Let C be a category whose objects are groupoids. An identity I is satis�ed in some

object G of C if the two sides of I are equal upon substitution of any choice of elements

of G for the indeterminates appearing in I. We say that an identity I implies an

identity J in C (and write I ⇒C J ) if, whenever I is satis�ed in some object of C, J
is also satis�ed in G. In this article, C is almost always the category of quasigroups,

so we typically suppress mention of the category and simply write I ⇒ J .

We summarize our main result as follows:

Theorem. (See Theorem 3.1)

Let I be a symmetric linear identity of length at least 2. Then:

• I implies commutativity if and only if I is heterogeneous, of length at least 3,

and not an alternating identity of odd length.

• I implies associativity if and only if I is heterogeneous and of even length.

In Section 4, we apply this result to give a complete classi�cation and description of

the varieties of quasigroups satisfying symmetric linear identities of length at least 2.

We then prove:

Theorem. (See Theorem 4.1)

There are exactly eight varieties of quasigroups satisfying symmetric linear identities

of length at least 2.
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When working with quasigroups, we use juxtaposition to denote the principal opera-

tion, and the standard notation / and \ for the operations de�ned by a/b = R−1
b (a)

and b\a = L−1
b (a), respectively. The identities (a/b)b = a, (ab)/b = a, a(a\b) = b and

a\(ab) = b all follow directly from the de�nitions and will be used frequently without

mention. To control proliferation of parentheses, we write x ·yz in place of x(yz), etc.

It is understood that · takes precedence over all other operators.

Often, arguments may be shortened by recourse to the following device. If (G, ∗) is a
groupoid, we de�ne its opposite groupoid Gop to be the groupoid whose underlying set

is the same as that of G, but equipped with the operation ◦ de�ned by a ◦ b = b ∗ a.
Clearly, left multiplication in G corresponds to right multiplication in Gop and vice

versa. If W is a word, we de�ne its opposite W as the word obtained from W by

switching the handedness of every symbol inW , but keeping the same indeterminates

throughout. Consequently, an identity I : W1 = W2 holds in G if and only the

opposite identity I : W1 = W2 holds in Gop. A particularly useful observation is

that if I and J are identities, then I ⇒ J if and only if I ⇒ J . This is especially
relevant when working with self-opposite identities like the associative law and the

commutative law: if one needs to show that one of these is implied by some other

identity I, it is often more convenient to argue instead that it is implied by I. We

will frequently make use of this principle without explicit mention.

Many results in this article were inspired by computations performed by the automatic

theorem prover Prover9 and its associated model builder Mace4 [6]. Nevertheless,

with the notable exception of Lemma 2.5, all proofs were developed by hand, and are

not mere transcriptions of Prover9 output.

We thank the referee for a careful reading, resulting in a variety of suggestions which

helped improve the quality of this paper.

2 Preliminaries

2.1 Balanced identities and the multiplication group

In preparation for studying identities implying commutativity, we study balanced

identities, which have particularly pleasant properties. Observe that a balanced iden-

tity takes the form LxWRz = RzW
′Lx for appropriate words W and W ′.

Following [7], we make some de�nitions. Let G be a groupoid and de�ne:

AL(G) = {f ∈ P (G) : f(xy) = g(x)y for some g ∈ P (G) and all x, y ∈ G}
BL(G) = {f ∈ P (G) : f(xy) = xg(y) for some g ∈ P (G) and all x, y ∈ G}
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We say that G is AL-transitive (BL-transitive) if for all x, y ∈ G there exists f ∈
AL(G) (respectively, f ∈ BL(G)) such that f(x) = y.

These sets are particularly meaningful when G is a division groupoid, a groupoid in

which all left and right multiplication maps are surjective. A key property undergird-

ing our arguments is a rigidity principle which appears in [7] as Lemma 2.5. We give

a slightly modi�ed version of this below.

Lemma 2.1. [7, Lemma 2.5] Suppose a division groupoid G is BL-transitive. If

f, f ′ ∈ AL(G) and f(a) = f ′(a) for some a ∈ G, then f = f ′. The same result holds

if G is assumed to be AL-transitive and f, f ′ ∈ BL(G).

Proof.

Suppose that G is BL-transitive and f, f ′ ∈ AL(G), a ∈ G are such that f(a) = f ′(a).

Select c ∈ G and then use surjectivity of Lc to �nd d ∈ G such that a = cd. Next, given

z ∈ G, use BL-transitivity to �nd h ∈ BL(G) such that h(a) = z. Let g, g′, k ∈ P (G)

witness that the formulas f(xy) = g(x)y, f ′(xy) = g′(x)y, and h(xy) = xk(y) hold

for all x, y ∈ G. Now

f(z) = f(h(a)) = f(h(cd)) = f(ck(d)) = g(c)k(d) = h(g(c)d) = h(f(cd)) = hf(a)

= hf ′(a) = hf ′(cd) = h(g′(c)d) = g′(c)k(d) = f ′(ck(d)) = f ′(h(cd)) = f ′(h(a)) = f ′(z).

The proof of the second statement is similar.

The relevance of balanced identities is made apparent by the next result.

Corollary 2.2. Let G be a division groupoid satisfying a balanced linear identity

LxW (y1, . . . , ym)Rz = RzW
′(y1, . . . , ym)Lx. (2)

Then for every a ∈ G, there exist b1, . . . , bm ∈ G such that

LaW (b1, . . . , bm) = RaW
′(b1, . . . , bm) = 1G.

Proof.

The hypothesis implies that for all a, c1, . . . , cm ∈ G, RaW
′(c1, . . . , cm) ∈ BL(G) and

LaW (c1, . . . , cm) ∈ AL(G); it is moreover obvious that 1G ∈ AL(G) ∩ BL(G). We

next argue that G is AL-transitive. Given x, y ∈ G, choose c1, . . . , cm ∈ G arbtirarily,

and let z = W (c1, . . . , cm)x. Since Rz is surjective, there exists a ∈ G such that

az = y, i.e. LaW (c1, . . . , cm)x = y. As LaW (c1, . . . , cm) ∈ AL(G), this shows that G

is AL-transitive. A similar argument establishes that G is BL-transitive.
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Now �x a ∈ G and use surjectivity of the multiplication maps to select b1, . . . , bm ∈ G
such that LaW (b1, . . . , bm)(a) = a. If we de�ne f = LaW (b1, . . . , bm), then f = 1G by

Lemma 2.1. Substituting x = z = a and yi = bi into (2), we have

1G(aa) = 1GRa(a) = LaW (b1, . . . , bm)Ra(a) = RaW
′(b1, . . . , bm)La(a) = [RaW

′(b1, . . . , bm)](aa).

Again by Lemma 2.1, RaW
′(b1, . . . , bm) = 1G.

If G is a quasigroup, then, Under the hypothesis of Corollary 2.2, the inverse of a left

or right multiplication map in G is itself a word in left and right multiplication maps.

Thus, we have the following interesting consequence:

Corollary 2.3. If G is a quasigroup satisfying a balanced linear identity, then the

multiplication groupM(G) consists of all words in left and right multiplication maps.

2.2 The Cancellation Principle.

We will often �nd it convenient to simplify arguments by replacing an unbalanced

identity by a balanced identity, using a shortening process which we call the cancel-

lation principle.

Suppose I : W = W t is a symmetric, unbalanced linear identity. Writing W =

φ1 · · ·φd, with φi = φi(xi) ∈ S for 1 ≤ i ≤ d, the condition of being unbalanced implies

h(φ1) = h(φd). Formally setting xd = x1, we obtain the identity φ1φ2 · · ·φd−1φ1 =

φ1φd−1 · · ·φ2φ1. Because the symbols φi represent formal left and right multiplication

maps, which become actual left and right multiplication maps when elements of a

particular quasigroup are substituted for the indeterminates, bijectivity of these maps

allows us to justify canceling φ1 on the left and right of both sides of the equation to

obtain the shorter identity φ2 · · ·φd−1 = φd−1 · · ·φ2.

Arguing inductively, we deduce a general principle. Suppose I : W = W t is a

nonpalindromic symmetric linear identity, withW = φ1 · · ·φd as above. BecauseW is

not a palindrome, it must be heterogeneous, and moreover there exists i, 1 ≤ i ≤ d/2,

such that h(φi) 6= h(φd−i+1); let i(W ) denote the smallest such integer i. Substituting

xd+1−i = xi for i, 1 ≤ i ≤ i(W ), and canceling successively, we obtain the shorter

identity

φi(W ) · · ·φd−i(W )+1 = φd−i(W )+1 · · ·φi(W )

This identity will still be symmetric and linear, but also has the advantage of being

balanced. Moreover, since terms are canceled in pairs, the length of the shortened

identity has the same parity as that of the original identity. Of course, even if W
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is palindromic, it is still possible (for identities of length at least 3) to cancel terms

in pairs to shorten the identity, but this process will never result in a balanced iden-

tity. We refer to this general principle of shortening an unbalanced identity as the

cancellation principle.

As an immediate application of the cancellation principle, we obtain the following

result about homogeneous identities.

Proposition 2.4.

• All left-homogeneous identities of even (odd) length are equivalent, as are all

right-homogeneous identities of even (respectively, odd) length.

• Every left (right) homogeneous identity of even length implies every left (respec-

tively, right) homogeneous identity of odd length.

Proof.

For n ≥ 1, the implication LHO2n ⇒ LHO2 follows from the cancellation principle.

The identity LHO2 is simply the statement that any two left multiplication operators

commute, so clearly LHO2 ⇒ LHOk for all k ≥ 2. Thus, a left homogeneous

identity of even length implies every left homogeneous identity. Similarly, cancellation

shows LHO2n+1 ⇒ LHO3, so it only remains to prove LHO3 ⇒ LHO2n+1. We

argue by induction on n, the case n = 1 being trivial. Assume that n > 1 and

LHO3 ⇒ LHO2n−1. The following argument establishes LHO3 ⇒ LHO2n+1, by

application of LHO2n−1 to the parenthesized expressions and LHO3 to the expression

in square brackets.

(Lx1 · · ·Lx2n−1)Lx2nLx2n+1

= Lx2n−1(Lx2n−2 · · ·Lx1Lx2n)Lx2n+1

= Lx2n−1Lx2n(Lx1 · · ·Lx2n−2Lx2n+1)

= [Lx2n−1Lx2nLx2n+1 ]Lx2n−2 · · ·Lx2Lx1

= Lx2n+1Lx2nLx2n−1Lx2n−2 · · ·Lx2Lx1 .

By arguing in the opposite groupoid, we see that the analogous statements hold for

right-homogeneous identities.
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2.3 Alternating identities

The goal of this section is to prove that all alternating identities of odd length are

equivalent. The nontrivial part is to show that Alt(3, L) and Alt(3, R) are equivalent;

by arguing in the opposite quasigroup, it is su�cient to show Alt(3, L)⇒ Alt(3, R).

The proof of this assertion proceeds in two phases. In the �rst phase, we show that

Alt(3, L) implies the so-called medial (or entropic) identity xz · yu = xy · zu. In

the second phase, we derive further consequences of Alt(3, L), which, when combined

with the medial identity, imply Alt(3, R).

Lemma 2.5. A quasigroup satis�es Alt(3, L) if and only if it satis�es Alt(3, R).

Proof.

Observe that Alt(3, L), which is the identity x((yz)u) = y((xz)u), is equivalent, via

the substitutions x 7→ x/z and y 7→ y/z, to x/z · yu = y/z · xu. Renaming variables,

we have

x/y · zu = z/y · xu. (3)

Substitute z 7→ zy to obtain

(x/y)(zy · u) = z · xu. (4)

On the other hand, substituting y 7→ xy, u 7→ y into (3) yields

x/(xy) · zy = z. (5)

Putting z 7→ z/y in (5), we obtain

(x/(xy))z = z/y (6)

and multiplying both sides of (6) on the right by y, we have

(x/(xy))z · y = z. (7)

Next, we interchange x and z in (6) and rewrite it as (z/(zy))x = x/y; then, substi-

tuting y 7→ z\y, we deduce z/(z(z\y)) ·x = x/(z\y), i.e. x/(z\y) = z/y ·x. Renaming

variables once more, we conclude

x/(y\z) = y/z · x. (8)

Starting from (7) and substituting y 7→ x\y, we have

(x/y)z · (x\y) = z, (9)
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which, upon making the substitution x 7→ xy, becomes xz · ((xy)\y) = z. Renaming

variables once again, we obtain

xy · ((xz)\z) = y. (10)

Using (8), we have

xz = (xz)/z · z = z/((xz)\z),

whereas replacing y by means of (10) yields

yu = (xy · ((xz)\z))u.

For convenience, set w = (xz)\z. From the formulas immediately above, we obtain

xz · yu = (z/w) · ((xy · w)u) (11)

Finally, applying (4) to the right side of (11), we deduce the medial identity

xz · yu = xy · zu. (12)

Returning to (5), substitute y 7→ x\y to get x/y · z(x\y) = z; then substitute x 7→ xy

to obtain x · z((xy)\y) = z. Renaming variables gives x · y((xz)\z) = y, and dividing

each side on the left by x yields

y((xz)\z) = x\y. (13)

From the medial identity (12), we have xy · u((zw)\w) = xu · y((zw)\w). Applying

(13) to both sides of this equation, we conclude

xy · (z\u) = xu · (z\y). (14)

Now substitute u 7→ zu and y 7→ zy to conclude (x(zy))u = (x(zu))y, which is

precisely Alt(3, R).

Remark.

Even though Alt(3, L) (or, equivalently, Alt(3, R)) implies the medial identity, the

converse implication does not hold. A counterexample is furnished by the quasigroup

A whose Cayley table is given in Section 3.1.

Corollary 2.6. All alternating identities of odd length are equivalent.
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Proof.

The cancellation principle shows that for all n ≥ 1, Alt(2n + 1, L) implies Alt(3, L)

if n is even or Alt(3, R) if n is odd. Likewise, Alt(2n + 1, R) implies Alt(3, R) if n

is even or Alt(3, L) if n is odd. Because Alt(3, L) and Alt(3, R) are equivalent by

Lemma 2.5, we conclude that any alternating identity of odd length implies both

alternating identities of length 3. It remains to show that for all n ≥ 1, Alt(2n+1, L)

and Alt(2n + 1, R) can be deduced from Alt(3, L) (or equivalently from Alt(3, R)).

We proceed by induction on n. The base case n = 1 is Lemma 2.5, so suppose n > 1

and Alt(3, L) holds. By induction, Alt(2n − 1, L) and Alt(2n − 1, R) hold. Then,

reasoning as in the proof of Proposition 2.4:

(Lx1Rx2 · · ·Rx2n−2Lx2n−1)Rx2nLx2n+1

= (Lx2n−1Rx2n−2 · · ·Rx2Lx1)Rx2nLx2n+1

= Lx2n−1(Rx2n−2Lx2n−3 · · ·Lx1Rx2n)Lx2n+1

= Lx2n−1(Rx2nLx1 · · ·Lx2n−3Rx2n−2)Lx2n+1

= Lx2n−1Rx2n(Lx1Rx2 · · ·Rx2n−2Lx2n+1)

= Lx2n−1Rx2n(Lx2n+1Rx2n−2 · · ·Rx2Lx1)

= (Lx2n−1Rx2nLx2n+1)Rx2n−2 · · ·Rx2Lx1

= (Lx2n+1Rx2nLx2n−11)Rx2n−2 · · ·Rx2Lx1

Thus, Alt(3, L) ⇒ Alt(2n + 1, L). By recourse to the opposite quasigroup, we see

Alt(3, R)⇒ Alt(2n+ 1, R).

3 Main Result

We now come to the statement of our main theorem, which will be proven by stages

in Sections 3.1 and 3.2.

Theorem 3.1. Let I be a symmetric linear identity of length at least 2. Then:

• I implies commutativity if and only if I is heterogeneous, of length at least 3,

and not an alternating identity of odd length.

• I implies associativity if and only if I is heterogeneous and of even length.
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3.1 Negative results

In this section, we prove those parts of Theorem 3.1 involving the exhibition of coun-

terexamples. We begin by considering quasigroups represented by the Cayley tables

below.

A B

* 0 1 2
0 1 2 0
1 0 1 2
2 2 0 1

* 0 1 2
0 0 2 1
1 2 1 0
2 1 0 2

C D

* (0,0) (0,1) (1,0) (1,1)
(0,0) (0,0) (1,0) (1,1) (0,1)
(0,1) (1,1) (0,1) (0,0) (1,0)
(1,0) (0,1) (1,1) (1,0) (0,0)
(1,1) (1,0) (0,0) (0,1) (1,1)

* (0,0) (0,1) (1,0) (1,1)
(0,0) (0,0) (0,1) (1,0) (1,1)
(0,1) (1,0) (1,1) (0,1) (0,0)
(1,0) (1,1) (1,0) (0,0) (0,1)
(1,1) (0,1) (0,0) (1,1) (1,0)

To facilitate computation, it is convenient to have formulas for the respective oper-

ations ∗ on each of these quasigroups. In each of the following formulas, + denotes

either addition modulo 3 (on the underlying set {0, 1, 2} of the quasigroups A and B)

or coordinatewise addition modulo 2 (on the underlying set {(0, 0), (0, 1), (1, 0), (1, 1)}
of the quasigroups C and D).

A : x ∗ y = 2x+ y + 1

B : x ∗ y = 2x+ 2y

C : (x1, y1) ∗ (x2, y2) = (x2 + y1 + y2, x1 + x2 + y1)

D : (x1, y1) ∗ (x2, y2) = (x1 + x2 + y1, x1 + y2 + (x1 + y1)x2)

Proposition 3.2.

• No homogeneous linear identity implies either commutativity or associativity.

• No symmetric linear identity of odd length implies associativity.

• No alternating identity of odd length implies either commutativity or associa-

tivity.

12



Proof.

It is clear that none of these quasigroups are groups, and that B is commutative,

whereas A and C are not. It is easy to check that in A, L2 = L2
0 and L1 = L3

0, so

all left multiplication maps commute and hence every homogeneous linear identity

in left multiplication symbols is satis�ed in A. Likewise, every homogeneous linear

identity in right multiplication symbols is satis�ed in Aop. Thus, homogeneous linear

identities imply neither commutativity nor associativity.

Now consider a symmetric identity I of odd length. Because B is commutative, we

have Lx = Rx; hence to verify that I holds in B, it su�ces to show that Lx1 · · ·Lxn =

Lxn · · ·Lx1 holds for n odd. For i, j ∈ {0, 1, 2}, Li(i) = i and Li(j) 6= j for j 6= i,

so L0, L1, and L2 are transpositions in the symmetric group S{0,1,2}. If b1, . . . , bn ∈
B, then σ = Lb1 · · ·Lbn , being the product of an odd number of transpositions in

S{0,1,2}, is an odd permutation and hence must itself be a transposition. Therefore,

Lb1 · · ·Lbn = σ = σ−1 = L−1
bn
· · ·L−1

b1
= Lbn · · ·Lb1 , and so a symmetric linear identity

of odd length does not imply associativity.

To prove the last statement, it su�ces (by Corollary 2.6) to show that Alt(3, L) holds

in the quasigroup C. This can be done by brute force; however, we instead give a

more conceptual argument that any alternating identity of odd length holds in C.

Direct computation shows that the identity Rx = L2
x holds in C, and that x2 = x for

all x ∈ C. Since L3
x = 1, it follows that Rx = L−1

x and Lx = R−1
x . By identifying the

multiplication groupM(C) with a subgroup of S4 in the natural manner, the various

left and right multiplication maps inM(C) correspond to the eight elements of order

3 in S4. Thus,M(C) ∼= A4.

We claim that the identities LxRy = LyRx and RxLy = RyLx also hold in C. If

a, b ∈ C are distinct, then Rb = L−1
b 6= L−1

a , so LaRb 6= 1C . However, LaRb �xes

neither a nor b, so LaRb must have order 2 as a member of M(C). Thus, LaRb =

(LaRb)
−1 = R−1

b L−1
a = LbRa. Since LaRb = LbRa obviously holds when a = b, we

have established the identity LxRy = LyRx. From this, we can easily deduce the

other identity:

RxLy = L−1
y LyRxLy = L−1

y LxRyLy = L−1
y Lx = RyLx.

Using these two identities, it is easy to see that for all n ≥ 1, both Alt(2n+1, L) and

Alt(2n + 1, R) hold in C. Therefore, an alternating identity of odd length implies

neither commutativity nor associativity.

13



3.2 Positive Results

The results of this section will �nish the proof of Theorem 3.1.

Lemma 3.3. A quasigroup satisfying a left- (right-)homogeneous symmetric identity

of even length has a left (respectively, right) neutral element.

Proof.

Suppose G is a quasigroup satisfying Lx1 · · ·Lx2d
= Lx2d

· · ·Lx1 . Select a ∈ G arbitrar-

ily and choose e ∈ G such that Le(a) = a. Now suppose b ∈ G. Select a2, . . . , ad ∈ G
arbitrarily; then use bijectivity of the multiplication maps to select ad+1 ∈ G such

that La2 · · ·Lad
Lad+1

Lad
· · ·La2a = b. Then

Leb = LeLa2 · · ·Lad
Lad+1

Lad
· · ·La2a = La2 · · ·Lad

Lad+1
Lad
· · ·La2Lea = b.

The assertion for right multiplication maps can be proved by reference to the opposite

quasigroup.

We begin with the case of symmetric balanced identities.

Proposition 3.4. Every heterogeneous nonpalindromic linear identity implies com-

mutativity.

Proof.

Let I be a heterogeneous nonpalindromic linear identity. By the cancellation prin-

ciple, we may assume without loss of generality that I is balanced, i.e. I takes on

the form LxW (y1, . . . , ym)Rz = RzW
′(y1, . . . , ym)Lx. Now �x a ∈ G; by Corollary 2.2

there exist b1, . . . , bm ∈ G such that W (b1, . . . , bm) = L−1
a and W ′(b1, . . . , bm) = R−1

a .

Then, substitute yi = bi in the original identity and apply the above formulae to

obtain LxL
−1
a Rz = RzR

−1
a Lx. Setting x = z = a, we deduce Ra = La. Since a was

arbitrary, we have established the commutative law.

Proposition 3.5. Every heterogeneous, palindromic, symmetric linear identity of

even length 2d ≥ 4 implies commutativity.

Proof.

Let W = φ1(x1) · · ·φd(xd)φd(yd) · · ·φ1(y1) be a heterogeneous, palindromic word of

length at least 4, and consider the identity I : W = W t. By considering the opposite

identity if necessary, we may assume without loss of generality that h(φd) = R. Since

I is heterogeneous, there exists i, 1 ≤ i < d, such that h(φi) = L. By choosing i as

large as possible, we see that our identity takes on the form

φ1(x1) · · ·φi−1(xi−1)Lxi
Rxi+1

· · ·Rxd
Ryd
· · ·Ryi+1

Lyi
φi−1(yi−1) · · ·φ1(y1)

14



= φ1(y1) · · ·φi−1(yi−1)Lyi
Ryi+1

· · ·Ryd
Rxd
· · ·Rxi+1

Lxi
φi−1(xi−1) · · ·φ1(x1),

which after cancellation implies

Lxi
Rxi+1

· · ·Rxd
Ryd
· · ·Ryi+1

Lyi
= Lyi

Ryi+1
· · ·Ryd

Rxd
· · ·Rxi+1

Lxi
. (15)

Applying further cancellation to (15) yields the identity:

Rxd
Ryd

= Ryd
Rxd

. (16)

By Lemma 3.3, G has a right neutral element e ∈ G. Now substitute xj = e and

yj = e in (15) for j, i+ 1 ≤ j ≤ d, to obtain Lxi
Lyi

= Lyi
Lxi

. Applying both sides of

this identity to e, we have xiyi = yixi, which is the commutative law.

The analogous statement for identities of odd length is more di�cult to prove.

Proposition 3.6. Every heterogeneous, palindromic, nonalternating, symmetric lin-

ear identity of odd length 2d+ 1 ≥ 3 implies commutativity.

Proof.

Let W = φ1(x1) · · ·φd(xd)φd+1(xd+1)φd(xd+2) · · ·φ1(x2d+1) be a heterogeneous, palin-

dromic, nonalternating word of length at least 3, and consider the identity

I : W = W t. By substituting x2d+2−i = xi for 1 ≤ i ≤ d− 1 into I and applying the

cancellation principle, we obtain the shorter identity

φd(xd)φd+1(xd+1)φd(xd+2) = φd(xd+2)φd+1(xd+1)φd(xd) (17)

which we call the core of I. We separate the proof into two cases, according to

whether the core is homogeneous or heterogeneous.

If the core of I is homogeneous, then, since I is heterogeneous and palindromic, there

exists some largest value i, 1 ≤ i < d, such that h(φi) 6= h(φd). By considering the op-

posite groupoid, we may assume without loss of generality that h(φi) = h(φ2d−i+2) =

L, and that h(φj) = R for j, i + 1 ≤ j ≤ 2d − i + 1. Rewriting the core (17) as

RxRyRz = RzRyRx, or ((uz)y)x = ((ux)y)z, substitute x 7→ u\x and z 7→ u\z to

obtain (zy)(u\x) = (xy)(u\z), which can be recast as

Ru\xLz = Ru\zLx. (18)

Applying the cancellation principle to I again, but this time cancelling o� only i− 1

pairs, we obtain the identity:

Lxi
Rxi+1

· · ·Rx2d−i+1
Lx2d−i+2

= Lx2d−i+2
Rx2d−i+1

· · ·Rxi+1
Lxi

. (19)
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Apply both sides to a new indeterminate v and write w = Rx2d−i
· · ·Rxi+1

Lxi
v to yield

Lxi
Rxi+1

· · ·Rx2d−i+1
Lx2d−i+2

v = x2d−i+2(wx2d−i+1) (20)

Next, substitute x2d−i+1 7→ w\x2d−i+1 to obtain

Lxi
Rxi+1

· · ·Rx2d−i
Rw\x2d−i+1

Lx2d−i+2
v = x2d−i+2x2d−i+1 (21)

In light of (18), we see that the left side of (21) is invariant upon permutation of

x2d−i+1 and x2d−i+2. The same must be true of the right side; hence, x2d−i+2x2d−i+1 =

x2d−i+1x2d−i+2, and so commutativity holds.

Now suppose the core of I is heterogeneous. Since I is assumed to be palindromic

and not alternating, it must contain two consecutive symbols of the same handedness.

By considering the opposite quasigroup, we may assume without loss of generality

that h(φi) = h(φi+1) = L for some i, 1 ≤ i < d. The core of I is then either

Alt(3, L) or Alt(3, R); however, since these two are logically equivalent by Lemma

2.5, we may assume in either case that Alt(3, L) holds, i.e. LxRyLz = LzRyLx. Thus

x((zu)y) = z((xu)y), which, upon making the substitutions x 7→ x/u, z 7→ z/u, may

be recast as (x/u)(zy) = (z/u)(xy), or

Lx/uLz = Lz/uLx. (22)

Now applying the cancellation principle to I, we obtain

Lxi
Lxi+1

φi+2(xi+2) · · ·φ2d−i(x2d−i)Lx2d−i+1
Lx2d−i+2

= Lx2d−i+2
Lx2d−i+1

φ2d−i(x2d−i) · · ·φi+2(xi+2)Lxi+1
Lxi

.(23)

Apply both sides to a new indeterminate v, and write w = φ2d−i(x2d−i) · · ·φxi+2
Lxi+1

Lxi
v

to deduce

Lxi
Lxi+1

φi+2(xi+2) · · ·φ2d−i(x2d−i)Lx2d−i+1
Lx2d−i+2

v = Lx2d−i+2
Lx2d−i+1

w = x2d−i+2(x2d−i+1w)(24)

Now substitute x2d−i+1 7→ x2d−i+1/w to obtain:

Lxi
Lxi+1

· · ·Lxd
Rxd+1

Lxd+2
· · ·Lx2d−i+1/wLx2d−i+2

v = x2d−i+2x2d−i+1 (25)

By (22), the left side of (25) is invariant under permutation of x2d−i+1 and x2d−i+2.

Thus, x2d−i+2x2d−i+1 = x2d−i+1x2d−i+2, and commutativity holds in this case also.

We have now proved all assertions of Theorem 3.1 involving commutativity. The

remaining statements now follow readily.

Proposition 3.7. Every heterogeneous symmetric identity of even length implies

associativity.
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Proof.

Suppose I takes on the form

φ1(x1) . . . φd(x2d) = φd(x2d) . . . φ1(x1). (26)

If d = 1, there is nothing to prove, so assume d ≥ 2. If G is a quasigroup in

which I is satis�ed, then by Proposition 3.4 or 3.5, the commutative law Lx = Rx

holds in G. Replacing every right multiplication symbol in I with its corresponding

left multiplication symbol, we observe that G satis�es a homogeneous symmetric

identity of even length. By Lemma 3.3, G has a left neutral element e, which, by

commutativity, must be a two-sided neutral element. Now choose integers i and j,

1 ≤ i, j ≤ d, such that h(φi) = L and h(φj) = R; without loss of generality, we may

assume i < j. Then, set xk = e for all k 6= i, j in (26) to conclude Lxi
Rxj

= Rxj
Lxi

.

This shows that associativity holds in G.
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Table 1:
Name Identity Description

Ab Alt(4) Abelian groups: heterogeneous, of even length ≥ 4
Gr Alt(2) Groups: heterogeneous, of length 2
AltO Alt(3, L) Alternating, of odd length ≥ 3
LHom(2) LHO2 Homogeneous in L, of even length ≥ 2
LHom(3) LHO3 Homogeneous in L, of odd length ≥ 3
RHom(2) RHO2 Homogeneous in R, of even length ≥ 2
RHom(3) RHO3 Homogeneous in R, of odd length ≥ 3
HeON LLR Heterogeneous, nonalternating, of odd length ≥ 3

4 Varieties

We apply the results of Section 3 to classify varieties of quasigroups satisfying sym-

metric linear identities. For convenience of reference, we abbreviate by LLR the

identity LxLyRz = RzLyLx.

Theorem 4.1. There are exactly eight varieties of quasigroups satisfying symmetric

linear identities of length at least 2. Their names and descriptions, along with a

representative identity from each, is given in Table 1.

The inclusions among these varieties are described by the following Hasse Diagram.

Superscripts indicate properties enjoyed by quasigroups in that variety (c=commutative,

2=two-sided neutral element, L=left neutral element only, R=right neutral element

only, 0=no neutral element).

Ab
c,2, Alt(4)

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

kkkkkkkkkkkkkk

SSSSSSSSSSSSSS

Gr
2, Alt(2) LHom2

L, LHO2 HeON
c,0, LLR

kkkkkkkkkkkkkkk

SSSSSSSSSSSSSSS RHom2
R, RHO2

LHom3
0, LHO3 AltO

0, Alt(3, L) RHom3
0, RHO3
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The �rst step in the proof is to show that the list of varieties in Table 1 is exhaustive,

and that all the implications in the above Hasse diagram are valid. Observe that

LHO2 ⇒ LHO3 and RHO2 ⇒ RHO3 by Proposition 2.4. All left (respectively,

right) homogeneous identities of even (respectively, odd length) are equivalent by

Proposition 2.4 and all alternating identities of odd length are equivalent by Corollary

2.6. The remaining implications are proven below.

Lemma 4.2.

• Let G be a quasigroup. Then

G is an abelian group ⇔ Alt(2n) holds in G for some n ≥ 2⇔ Alt(2n) holds in G for all n ≥ 2.

• Every nonalternating heterogeneous identity of odd length implies LHO3, RHO3,

and Alt(3, L). All nonalternating heterogeneous identities of odd length are

equivalent.

Proof.

In an abelian group, the identities LxRy = RyLx, LxLy = LyLx and RxRy = RyRx

are all satis�ed, so any symmetric linear identity will hold. Conversely, if G is a

quasigroup in which Alt(2n) holds for some n ≥ 2, then by Theorem 3.1 the operation

on G must be both commutative and associative.

Now suppose m,n ≥ 1, and I, I ′ are nonalternating heterogeneous identities of

respective lengths 2m+ 1 and 2n+ 1. By Theorem 3.1, I implies commutativity, i.e.

Lx = Rx holds; this in turn implies LHO2m+1. By Proposition 2.4, LHO3 holds; in

conjunction with commutativity, this means that any symmetric identity of length 3

holds. On the other hand, Proposition 2.4 shows LHO3 ⇒ LHO2n+1; in conjunction

with commutativity, this implies that any symmetric identity of length 2n+ 1 holds.

In particular, I ⇒ I ′.

It remains to show that there are no further inclusions among the varieties. To

this end, we construct a table summarizing which de�ning identities hold in each

of the quasigroups A, B, C, and D de�ned in Section 3.1. A bullet in an entry

means that the identity is satis�ed in that quasigroup. A tuple of elements represents

data constituting a counterexample: these are the elements to be substituted for the

indeterminates appearing in the de�ning identity (read in order of appearance from

left to right), the last coordinate being the element to which each side of that identity

is to be applied. For instance, the entry (1, 0, 0, 0) for the identity Alt(3, L) and the

quasigroup A means that (L1R0L0)0 6= (L0R0L1)0. As none of the quasigroups in
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Table 2:
Quasigroup Alt(3, L) LHO2 LHO3 RHO2 RHO3 LLR

A (1, 0, 0, 0) • • (1, 0, 0) • NC
B • (1, 0, 0) • (1, 0, 0) • •
C • (01, 00, 00) (01, 00, 00, 00) (01, 00, 00) (01,00,00,00) NC
D (10, 00, 00, 00) • • (10, 00, 00) (10, 00, 00, 00) NC

question are associative, we omit the columns corresponding to the varieties Ab and

Gr. Since LLR implies commutativity by Theorem 3.1, we use the symbol `NC'

(noncommutative) to indicate the reason that LLR is not satis�ed in the quasigroups

A, C, and D. Finally, for brevity we use the notation ab in place of (a, b) for elements

of the quasigroups C and D.

Lemma 4.3. The only implications among the varieties in Table 1 are those shown

in the Hasse diagram.

None of the quasigroups in Table 2 satis�es associativity, yet each of the identities

LHO2, RHO2, LLR is satis�ed in at least one of these quasigroups. Thus Alt(2),

which de�nes the variety of groups, cannot be implied by any of these identities.

Furthermore, direct computation in the group S3 shows that L(1 3 2)L(1 2)L(1 2 3) 6=
L(1 2 3)L(1 2)L(1 3 2), so LHO3 is not satis�ed in S3. Since S3 is the unique non-

abelian group of order 6, it is isomorphic to its opposite group, and thus RHO3 is

not satis�ed in it, either. Finally, letting e denote the identity element of S3, we have

L(1 2)ReL(1 3) 6= L(1 3)ReL(1 2); hence, Alt(3, L) is not satis�ed in S3. Thus, Alt(2)

does not imply any among LHO3, Alt(3, L), and RHO3.

From the table, we see that LHO2 implies neither Alt(3, L) nor RHO3. Since

Alt(3, L) ⇔ Alt(3, R) by Lemma 2.5, it follows (by consideration of opposite struc-

tures) that RHO2 implies neither Alt(3, L) nor LHO3. The quasigroup B witnesses

that LLR implies neither LHO2 nor RHO2. Likewise, B shows that LHO3 does not

imply LHO2; D shows that LHO3 does not imply RHO3, and A shows that LHO3

does not imply Alt(3, L). By consideration of opposite structures, we see that RHO3

does not imply any identity among RHO2, Alt(3, L), and LHO3. Finally, C shows

that Alt(3, L) does not any among LHO3, RHO3, and LLR. This concludes the

proof that there can be no further containment relations among the varieties in the

Hasse diagram.

20



References

[1] R. Akhtar. Generalized associativity in groupoids. Quasigroups and Related

Systems 24 (2016), 1-6.

[2] V. D. Belousov. Systems of quasigroups with generalized identities. Uspehi

Mat. Nausk 20 (121), no. 1 (1965), 75-146.

[3] A. Krapeº. Generalized linear functional equations on almost quasigroups. I.

Equations with at most two variables. Aequationes Math. 61, no. 3 (2001),

255-280.

[4] A. Krapeº. Quadratic level quasigroup equations with four variables. I. Publ.

Inst. Math. (Beograd) (N.S.) 81 (95) (2007), 53-67.

[5] A. Krapeº. Quadratic level quasigroup equations with four variables. II. Publ.

Inst. Math. (Beograd) (N.S.) 93 (107) (2013), 29-47.

[6] W. McCune. Prover9, equational reasoning tool and Mace4, �nite model

builder. Available at http://www.cs.unm.edu/∼mccune/mace4/.

[7] M. Niemenmaa and T. Kepka. On a general associativity law in groupoids.

Monatshefte für Mathematik 113 (1992), 51-57.

[8] J. D. Phillips and P. Vojt�echovský. The varieties of loops of Bol-Moufang

type. Algebra Universalis 54 (2005), no. 3, 259-271.

[9] J. D. Phillips and P. Vojt�echovský. The varieties of quasigroups of Bol-

Moufang type: An equational reasoning approach. J. Algebra 293 (2005),

17-33.

[10] H. Plugfelder. Quasigroups and loops: Introduction. Sigma Series in Pure

Mathematics, 7, 1990.

21


