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Introduction

The intimate relationship between mathematics and music has been recognized, inves-
tigated, and celebrated since ancient times. Pythagoras, who was not only a mathemati-
cian, but also a composer, music theorist, and instrumentalist, studied the connection
between musical intervals and rational numbers [1]. On the other end of the continent,
the Indian mathematician Piṅgala used combinatorics to analyze metrical patterns in
Sanskrit poetry [2]. Before distinct academic disciplines began to take form in the nine-
teenth century, it was quite common for musicians to maintain a keen interest in math-
ematics and vice versa. Papadopoulos notes in particular the correspondence among
the composer Rameau and the mathematicians Euler and d’Alembert. [1] Closer to our
own time, the American serialist composer Milton Babbitt was noted for his use of set
theory and combinatorics in musical analysis and composition ([3], [4]).

The French composer Olivier Messiaen (1908-1992) was also greatly influenced by
mathematics, although in a different way. Messiaen likely did not have much training
in higher mathematics [1], yet his work reveals a profound respect for the role of math-
ematics in music. One often finds him grappling with fairly sophisticated concepts (for
example, the order of a permutation) in his work, but from outside the formalism of
advanced mathematics. In 1944, Messiaen published The Technique of my Musical
Language, an exposition of the theory behind his music. This work was intended as
a service to his students and also to correct various misconceptions that had arisen
concerning his own (musical) intentions. In the last of its three sections, Messiaen dis-
cusses tonal systems and introduces his now-famous “modes of limited transposition.”
Along the way, he makes a curious claim about the number of such modes, which –
if interpreted literally – is not true. Equally intriguing is another comment he makes
about a generalization of his modes to a tonal system in which the octave is divided
into quarter-tones rather than semitones.

Two questions immediately arise: what could Messiaen have meant in making his
claim as stated, and how might mathematics be put to use to address the enumeration
problem to which he drew attention? The objective of this article is to address these
questions, along with suitable generalizations of them, using tools from elementary
number theory. We begin with a quick survey of Messiaen’s life and work to situate
him within the history of Western classical music and to give some sense of how math-
ematics fit into his conception of music. This is followed by a very brief overview of
concepts from music theory and a discussion of Messiaen’s classification of modes of
limited transposition. The last three sections are concerned with mathematics and ad-
dress the aforementioned questions about enumeration at suitable levels of generality.

In preparing this article, we have tried to assume as little as possible about mu-
sic theory. Readers conversant with music theory can easily skim large parts of the
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third section. Likewise, those familiar with Möbius inversion could probably skip the
mathematical preliminaries. The main mathematical results are found in the last two
sections of the paper. For a sampling of applications of enumeration to problems in
music theory beyond those addressed in this article, the reader is directed to the works
[5], [6], [7], [8] and [9].

We thank the referees and editor for help in refining the content and exposition of
this article.

Olivier Messiaen

The turn of the twentieth century was an era of considerable musical innovation. In the
second half of the nineteenth century, the tonal system that had dominated European
classical music since 1600 had been challenged and stretched to its limits. By the time
Messiaen was born in Avignon, France in 1908, Romanticism had largely given way
to new stylistic movements. Some of them, like Impressionism, retained elements of
traditional European music – scales and chords, for instance – but employed them
in highly innovative ways. Others, like Expressionism, discarded the tonal system in
favor of a serialist approach.

Messiaen entered the Paris Conservatory at the age of eleven, eventually studying
organ under Marcel Dupré and composition under Paul Dukas. He was appointed as-
sistant organist at the Église de la Sainte-Trinité in Paris in 1929 and promoted to
organist in 1931, a position he held until his death. It is not surprising, therefore, that a
substantial proportion of his output consists of sacred music, or at least music inspired
by religious themes. In 1966, Messiaen was appointed professor of composition at the
Paris Conservatory. By the time he retired from that post in 1978, he was an interna-
tionally recognized composer. [10] He was also a committed ornithologist and drew
considerable inspiration from birdsong.

In his writing, Messiaen makes clear that his aim was not to abandon the principles
of Western music but rather to enrich them. Indeed, he drew upon many sources –
musical and non-musical, Western and non-Western – for inspiration. In the preface to
The Technique of my Musical Language, he credits not only his teachers and family,
but also Shakespeare, birds, Russian music, plainchant, “Hindu rhythmics”, and the
mountains of Dauphiné. Mathematics makes its entrance in the very first chapter:

It is a glistening music we seek, giving to the aural sense voluptuously refined
pleasures. At the same time, this music should able to express some noble senti-
ments (and especially the most noble of all, the religious sentiments exalted by
the theology and the truths of our Catholic faith). This charm, at once voluptuous
and contemplative, resides particularly in certain mathematical impossibilities of
the modal and rhythmic domains. Modes which cannot be transposed beyond a
certain number of transpositions, because one always falls again into the same
notes; rhythms which cannot be used in retrograde, because in such a case one
finds the same order of values again – these are two striking impossibilities. [11,
p.13]

By “mathematical impossibilities”, Messiaen is referring to some form of symme-
try. This could be symmetry of rhythm, which he considers the horizontal dimension of
music, or of pitch, which he considers its vertical dimension. A devout Catholic whose
faith was the primary inspiration for his work, Messiaen believed that this cruciform
symmetry within music enhanced its effect not only on the emotions but ultimately on
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the very spirit of the listener, leading the latter to an imperfect but nevertheless true im-
age of God. Later in his work, Messiaen describes the effect of these “impossibilities”
on the listener:

. . . in spite of himself, he will submit to the strange charm of impossibilities:
a certain effect of tonal ubiquity in the non-transpositions, a certain unity of
movement (where beginning and end are confused because identical) in the non-
retrogradation, all things which will lead him progressively to that sort of theo-
logical rainbow which the musical language, of which we seek edification and
theory, seeks to be. [11, pp.21,63]

For Messiaen, therefore, mathematics was not merely a constituent of art, but an en-
gine that helped it achieve its end. Readers interested in listening to works of Messiaen
composed according to these principles are directed to the motet O Sacrum Convivium
or the last two movements of the organ cycle La Nativité du Seigneur. Those interested
in the role mathematics plays in other aspects of Messiaen’s music (i.e., beyond tonal
considerations) are referred to Messiaen’s original work [11] or the survey [1].

Background from music theory

Tuning and pitch classes The Pythagoreans believed, based on philosophical con-
siderations, that music was the foundation of mathematics. [12, p.114] This led them
to examine the sounds produced by strings, the ratio of whose lengths is some fraction
involving only powers of small primes. If that ratio is 2:1 (and hence the proportion
of the frequencies is 1:2), the interval so produced is called the octave. With a ratio of
3:2, one obtains the perfect fifth, and with a ratio of 4:3 one gets the perfect fourth. Ex-
tended consideration of these and other ratios led to the development of the system of
natural tuning. The limitations of this system can easily be seen: twelve perfect fifths
should be equivalent to seven octaves; however, 27 = 128 and

(
3
2

)12 ≈ 129.746. This
discrepancy does not present too serious a problem for music played on a single in-
strument with a limited range. However, for an instrument with a wide range – or even
music involving multiple instruments playing in different registers – tuning becomes a
challenge.

One solution to the problem posed by natural tuning is to use equal temperament,
the system used nowadays to tune most keyboard instruments. The idea behind equal
temperament is to make the proportion of frequencies associated to a semitone (the
smallest interval found in most Western music) equal to 12

√
2. As there are twelve

semitones in an octave, this results in an octave identical to that produced by natural
tuning. However, because α = 12

√
2 is irrational, intervals that are not integer mul-

tiples of an octave will differ from those produced by natural tuning. For instance,
there are five semitones in a perfect fourth and seven semitones in a perfect fifth, so
equal temperament assigns the fourth a proportion of α5 ≈ 1.335, slightly wider than
the natural fourth. On the other hand, the fifth receives a proportion of α7 ≈ 1.498,
slightly narrower than the natural fifth. These calculations illustrate why it makes sense
to subdivide the octave into twelve subintervals: powers of 21/12 approximate fairly
well the ratios that arise in natural tuning. As we will see later, it also helps that 12 has
a plenitude of integer divisors.

Among the advantages offered by equal temperament is that once one fixes a par-
ticular note at a base frequency f , the frequency of every other note in the twelve-tone
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system is uniquely determined; these are

Sf = {αnf : n ∈ Z}.

For instance, it is current convention for (most) orchestras to have “A above middle C”
tuned to 440 Hz. This means that the respective frequencies of the notes in the octave
immediately above that note are (in ascending order):

440, 440α, 440α2, . . . 440α11, 440α12 = 880.

These notes are named

A,A♯ = B♭,B,C,C♯ = D♭,D,D♯ = E♭,E, F, F♯ = G♭,G,G♯ = A♭,A.

The pattern repeats cyclically in adjacent octaves on either side, so that the sequence
of all notes looks like this:

. . . F♯,G,A♭,A,B♭,B,C,D♭,D,E♭,E, F, F♯,G,A♭,A,B♭,B,C, . . . .

The reader familiar with music theory may be wondering why we chose to write D♭ on
the line immediately above, rather than the enharmonically equivalent C♯. The reason
is that, for ease of comparison, we have adopted the same notation Messiaen uses in
his book.

Thus, A – without further qualification – refers not simply to the particular note
whose frequency is 440 Hz but to the set of notes corresponding to the frequencies
{2n · 440 : n ∈ Z}. In mathematical terms, a frequency is merely a positive real num-
ber. We therefore define an equivalence relation on (0,∞) by

g ∼ h if and only if g = 2nh for some n ∈ Z

and call an equivalence class for this relation a pitch class.

Now let f be a chosen base frequency, and let P0, P1, . . . , P11 denote the pitch
classes represented by the respective frequencies f, 21/12f, . . . , 211/12f . In view of
the obvious bijection between {Pi : 0 ≤ i ≤ 11} and the group Z12 of integers mod-
ulo 12, we will henceforth consider pitch classes simply as elements of Z12. It cannot
be emphasized enough that, however convenient it might be to use the “note names”
A, B♭, etc. to label pitch classes, the concept of a pitch class is itself independent of
note names, or even of the choice of base frequency. For example, if we choose C as
the pitch class 0, then D♭ corresponds to 1, D to 2, and so on. However, if we choose
F♯ as the pitch class 0, then G corresponds to 1, A♭ to 2, A to 3, and so on.

For the balance of the article, we assume that all pitch classes are defined relative
to some fixed base frequency.

Systems of tonality Readers with musical training have likely encountered scales.
Roughly speaking, scales are tonal systems upon which most pieces of Western art
music written between 1600 and 1910 were constructed. We will discuss the C major
scale below, but only as an example to illustrate pitch classes and the relationships
among them. Our ultimate interest lies in other systems of tonality.

The C major scale consists (within the span of one octave) of the note sequence
C, D, E, F, G, A, B, C. If we take C to be the pitch class 0, then this scale can be
represented by the sequence 0, 2, 4, 5, 7, 9, 11, 0 of pitch classes, as shown in Figure
1.
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Figure 1 C major scale, labeled with pitch classes

A key feature of this example is that each pitch class in the scale bears a unique
relationship to all the others. If we begin at pitch class 0, the sequence of gaps between
successive pitches in the scale is 2, 2, 1, 2, 2, 2, 1. If we begin at pitch class 4, however,
the sequence of gaps become 1, 2, 2, 2, 1, 2, 2. It is not hard to verify that beginning
the process at a different pitch class will yield a different sequence of gaps each time.
Thus, each pitch class plays a distinct “role” in the scale with respect to the others.
(Readers familiar with music theory will recognize pitch class 0 as the tonic, pitch
class 7 as the dominant, and so on.) One might say, loosely speaking, that the set of
pitch classes in the major scale is lacking in symmetry.

In contrast, Messiaen was most interested in tonal systems that, unlike the ma-
jor scale, exhibit a high degree of symmetry. Consider, for instance, the whole-
tone scale, identified as Mode 1 in Figure 2. There the sequence of pitch classes
is 0, 2, 4, 6, 8, 10, 0; hence, the sequence of gaps is 2, 2, 2, 2, 2, 2. It is obvious that
beginning at any other pitch class yields the same sequence of gaps. In contrast to the
major scale, the set {0, 2, 4, 6, 8, 10} of pitch classes possesses a high degree of sym-
metry. Moreover, if one transposes this sequence of pitch classes – in mathematical
terms, this amounts to adding some constant (modulo 12) to each pitch class – the
only other set of pitch classes thus obtained is {1, 3, 5, 7, 9, 11}. This stands in stark
contrast to the example of the major scale, whose set {0, 2, 4, 5, 7, 9, 11} of pitch
classes has twelve distinct transpositions. In general, we say that a nonempty, proper
subset S ⊆ Z12 has limited transposition if the set {a+ S : a ∈ Z12} of its translates
has fewer than twelve elements.

Our next task is to give a rigorous definition of the term mode. It is easy to see
that Z12 acts by translation on the set of nonempty, proper subsets of Z12: explicitly,
the action of a ∈ Z12 on S ⊆ Z12 is given by a+ S = {a+ s : s ∈ S}. In musical
terms, this translation action corresponds to transposing pitches, i.e., increasing or
lowering them by a fixed number of semitones, keeping in mind that pitches separated
by an octave are considered equivalent. For example, transposing the sequence A, B♭,
F, D up one semitone yields B♭, B, F♯, E♭; transposing that same sequence down two
semitones yields G, A♭, E♭, C. A mode is simply an orbit for this action. We can
therefore extend our definition of limited transposition: we say that a mode has limited
transposition if any subset of Z12 representing it has limited transposition. This is
equivalent to requiring that the mode (as an orbit) contain fewer than 12 elements, or
that the stabilizer of any set within that orbit be nontrivial.

Before proceeding further, several words of caution are in order. The first is that
our definition of mode has nothing to do with its typical use in music theory, i.e., in
reference to tonal systems of Ancient Greek or medieval music. The second is that
Messiaen’s use of the word “mode” differs slightly from ours. While we use mode
to refer to an orbit of the action just defined, Messiaen tends to use it in reference to
a representative of one of those orbits. Nevertheless, for ease of exposition we will
sometimes abuse terminology, using phrases like “mode with six pitch classes” when
in fact we mean “a mode, any one of whose representatives has six pitch classes”. We
will revisit these definitions in greater generality in the last two sections.
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Figure 2 Modes of limited transposition identified by Messiaen

Messiaen’s classification

In Chapter XVI of [11], Messiaen claims to classify modes of limited transposition.
Figure 2 shows the modes Messiaen identified on a staff, with C representing the pitch
class 0. Messiaen further asserts: “Their series is closed. It is mathematically impos-
sible to find others of them, at least in our tempered system of twelve semitones.” [11,
p. 58] What precisely he meant by that is less clear. Nonetheless, three things are evi-
dent from Messiaen’s “classification.” The first is that he does not consider the (orbit
of the) full set S = Z12 a mode of limited transposition, even though its stabilizer
with respect to the action defined above is nontrivial. The second is that because Mes-
siaen aims to use these modes as tonal systems for composition (loosely understood),
he seems uninterested in those containing fewer than six pitch classes. The third and
most troubling issue is that Messiaen’s classification seems incomplete. There is no
problem with his “first mode” (Mode 1 in Figure 2). Clearly {0, 2, 4, 6, 8.10} is the
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only subset of Z12 (up to translation) with a stabilizer of size 6. Mode 2 is in fact not
the only mode with stabilizer of size 4. Still, the only other one corresponds to the set
{0, 3, 6, 9} of pitch classes, which in mathematical terms is the unique subgroup of
Z12 of order 4 and in music corresponds to the diminished seventh chord. Messiaen
seems to acknowledge this implicitly ([11, p.59]), so one could justify its exclusion
from the list on the ground that it contains too few pitch classes. One can similarly
argue for the exclusion of the augmented triad from the list of modes with stabilizer
3. [11, p.59] However, Donald Street [13, p.819] notes that Messiaen omits without
mention the mode corresponding to the set {0, 3, 4, 7, 8, 11}, whose stabilizer clearly
has size 3. The exclusion of this mode is puzzling, especially in view of Messiaen’s in-
clusion of Mode I, which also has six pitch classes. On what basis does he retain some
modes with six pitch classes but discard others? A comment he makes upon furnishing
an example (from his own work) of the use of the fifth mode provides a hint: “This
mode 5, being a truncated mode 4, has the right of quotation here only because it en-
genders the melodic formula (already seen in Chapter X):” [11, p.62]. The observation
that mode 5 is a “truncation” of mode 4 is by itself hardly compelling as an explana-
tion for the exclusion of the missing mode. In fact, many of the modes Messiaen lists
are truncations of others in that same sense. It seems, rather, that he is applying both
aesthetic and mathematical criteria to identify modes acceptable to him for use.

In view of Messiaen’s choices – including his apparent ambivalence regarding
modes with exactly six pitch classes – it seems natural to study the following gen-
eralization of the mathematical question he considered. Given an integer n and an
equal subdivision of the octave into n pitch classes, how many modes of limited
transposition are there, and can those be classified? This question has been of interest
to music theorists for some time. Messiaen himself mentions such a classification for
quarter-tones (the case n = 24) but laments that he “cannot busy himself here with it.”
[11, p.58-59] (Perhaps the margin of his page was too small to accommodate all his
thoughts on the topic.) Other studies (see [14]) provide algorithms to compute modes
of limited transposition in the case of n subdivisions. Jedrzejewski [15, p.77, Theorem
94] applies Pólya’s Theorem to provide a formula for the number of such modes.
(Jedrzejewski’s definition of mode differs very slightly from ours in that he considers
the subset of all pitch classes to have limited transposition, so his calculation yields
one more than ours.) Related questions have been studied in [16]. Our contribution is
to apply techniques from elementary number theory to derive an expression for the
number of modes of limited transposition in terms of common arithmetic functions.

Mathematical preliminaries

In preparation for the main result, we recall some properties of the Möbius function
µ : Z+ → Z defined by

µ(n) =

 1 if n = 1
(−1)t if n is a product of t distinct primes
0 if n is not squarefree.

Instead of developing the theory from scratch, we will direct the reader to [17] for
details and simply state the main result, the so-called Möbius Inversion Theorem.

Theorem 1. (See [17, Theorem 2, p. 20] Let f : Z+ → C be a function. Define F :

Z+ → C by F (n) =
∑
d|n

f(d), where the sum is over all positive integer divisors d.
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Then

f(n) =
∑
d|n

µ(d)F
(n
d

)
=
∑
d|n

µ
(n
d

)
F (d).

Recall also Euler’s totient function ϕ : Z+ → Z+, defined by

ϕ(n) = |{a : 1 ≤ a ≤ n, gcd(a, n) = 1}| .

We now apply Theorem 1 to derive a formula for ϕ(n). Given n, define, for every
positive divisor d of n, Td = {m ∈ Z : 1 ≤ m ≤ n, gcd(m,n) = d}. Then
Td = {cd : c ∈ Z, 1 ≤ c ≤ n

d
, gcd(c, n

d
) = 1}, so by definition |Td| = ϕ

(
n
d

)
. In

view of the disjoint union {1, . . . , n} =
⊔

d|n Td and the fact that d divides n if and
only if n/d divides n, we have n =

∑
d|n ϕ

(
n
d

)
=
∑

d|n ϕ(d). Applying Theorem 1
(with f(n) = ϕ(n)) then yields

ϕ(n) =
∑
d|n

µ(d)
n

d
= n

∑
d|n

µ(d)

d
. (1)

In the next section, we will use Theorem 1 repeatedly in the proof of our main result.

Enumerating modes of limited transposition

Returning to the discussion of Messiaen’s work, it is evident that the modes he was
interested in are orbits under translation of nonempty, proper subsets of Z12 containing
at least six (perhaps at least seven) elements. We wish to generalize Messiaen’s idea
to tonal systems in which the octave is split into n subintervals of equal size, where
n ≥ 2.

For any integer n ≥ 2, the group Zn acts by translation on the set of nonempty,
proper subsets of itself. Note that for each k, 1 ≤ k ≤ n − 1, there is an induced
subaction of Zn on Pk,n = {S ⊆ Zn : |S| = k}. The stabilizer (for this action) of a
subset S ⊆ Zn is denoted Stab(S), and we call S primitive if Stab(S) is the trivial
subgroup. We then define an n-mode (or simply mode, if there is no ambiguity) to be
an orbit for this action. The size of a mode is the cardinality of any subset representing
the orbit, and the transposition length of that mode is the cardinality of the orbit itself.

A mode is said to be of limited transposition if its transposition length is strictly
less than n; this is equivalent to requiring it to be the orbit of some subset S such that
Stab(S) is nontrivial. A mode of limited transposition is a strong Messiaen mode if its
size is strictly greater than n/2 or a weak Messiaen mode if its size is exactly n/2.

Our goal is to enumerate modes of limited transposition, as well as strong and weak
Messiaen modes. Our method follows the algorithm of Baratè and Ludovico [14] to
arrive at a formula in closed form. A key observation is that, given a subgroup H of
an abelian group G, taking the quotient by H establishes a bijection between {S ⊆
G : Stab(S) = H} and {T ⊆ G/H : T is primitive}. This correspondence allows us
to reduce the problem of enumerating the modes of limited transposition to that of
enumerating primitive subsets.

Theorem 2. Let n ≥ 2 be an integer, and let ℓn denote the number of n-modes of
limited transposition. Let sn and wn denote, respectively, the number of strong and
weak Messiaen n-modes. Then
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1. For all n, ℓn = wn + 2sn. If n is odd, then wn = 0.

2. For all n, ℓn =
1

n

∑
d|n

(2d − 2)
(
ϕ
(n
d

)
− µ

(n
d

))
.

3. If n is even, then wn =
1

n

∑
d|n2

(
2d

d

)(
ϕ
( n

2d

)
− µ

( n

2d

))
.

Proof. Observe first that if H is the stabilizer of S ⊆ Zn, then S is a union of H-
cosets; thus, Zn \ S is also a union of H-cosets. It follows that complementation es-
tablishes a bijection between modes of limited transposition of size strictly less than
n/2 and strong Messiaen modes. Thus, ℓn = 2sn + wn. If n is odd, then there are no
modes of size n/2, so wn = 0.

We now consider the translation action of Zn on Qn = ∪n
k=1Pk,n. For each positive

divisor d of n, define qd,n to be the number of orbits of transposition length n/d. If
S ∈ Qn is a representative of any such orbit, then H = Stab(S) has order d and S is
a union of H-cosets. Furthermore, the image of S under the quotient map π : Zn →
Zn/H is a primitive subset of Zn/H ∼= Zn/d. Conversely, if T ⊆ Zn/H is primitive,
then π−1(T ) has stabilizer H . If follows that

qd,n = q1,n/d. (2)

Because Qn is a disjoint union of orbits, we have

|Qn| = 2n − 2 =
∑
d|n

n

d
qd,n =

∑
d|n

n

d
q1,nd =

∑
d|n

dq1,d.

By Theorem 1, nq1,n =
∑
d|n

µ
(n
d

)
(2d − 2), i.e.,

q1,n =
1

n

∑
d|n

µ
(n
d

)
(2d − 2). (3)

Now we can compute the number of modes of limited transposition:

ℓn =
∑

d|n, d>1

qd,n =
∑

d|n, d>1

q1,n/d =
∑
d|n

q1,d − q1,n.

From (3) this equals∑
d|n

∑
c|d

1

d
µ

(
d

c

)
(2c − 2)− 1

n

∑
c|n

µ
(n
c

)
(2c − 2).

Interchanging the order of summation in the first expression, this becomes∑
c|n

∑
d′|nc

µ(d′)

d′c
(2c − 2)− 1

n

∑
c|n

µ
(n
c

)
(2c − 2)

=
∑
c|n

2c − 2

c

∑
d′|nc

µ(d′)

d′
− 1

n

∑
c|n

µ
(n
c

)
(2c − 2).
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Using (1) to rewrite the second sum, we obtain

ℓn =
∑
c|n

2c − 2

c
· ϕ(n/c)

n/c
− 1

n

∑
c|n

µ
(n
c

)
(2c − 2)

=
1

n

∑
c|n

(2c − 2)ϕ(n/c)− 1

n

∑
c|n

µ
(n
c

)
(2c − 2)

=
1

n

∑
c|n

(2c − 2)
(
ϕ
(n
c

)
− µ

(n
c

))
.

This establishes the formula for ℓn.
We now enumerate wn for even values of n. This time, we consider the action of

Zn on R = Pn
2 ,n. For each positive divisor d of n, let rd,n be the number of orbits of

length n/d; arguing as before, we see that rd,n = r1,n/d. Since R is a disjoint union
of orbits, we have

|R| =
(

n

n/2

)
=
∑
d|n

n

d
rd,n =

∑
d|n

n

d
r1,nd =

∑
d|n

dr1,d.

When n is odd, there is obviously no such action, so rd,n = 0 for all positive di-
visors d of n and hence

∑
d|n dr1,d = 0. Defining β(n) to be 1 when n is even or 0

when n is odd, we have, in all cases,

∑
d|n

dr1,d = β(n)

(
n

n/2

)
.

Therefore, by Theorem 1,

r1,n =
1

n

∑
d|n

µ
(n
d

)
β(d)

(
d

d/2

)
.

As before, the number of weak Messiaen modes is:

wn =
∑

d|n, d>1

rd,n =
∑

d|n, d>1

r1,n/d =
∑
d|n

r1,d − r1,n.

A computation identical to the preceding one, but replacing 2c − 2 with β(c)

(
c

c/2

)
,

shows ultimately that

wn =
1

n

∑
c|n

β(c)

(
c

c/2

)(
ϕ
(n
c

)
− µ

(n
c

))
. (4)

As expected, wn = 0 when n is odd. When n is even, we have:

wn =
1

n

∑
c|n2

(
2c

c

)(
ϕ
( n

2c

)
− µ

( n

2c

))
. (5)
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Remark. The reasoning by which we arrived at the formula (2) leads itself readily to a
recursive procedure for finding (as opposed to merely enumerating) the modes of lim-
ited transposition associated with a given stabilizer subgroup. When n is prime, there
are none: all non-trivial, proper subsets of Zn are in this case primitive. Now suppose
n is composite. For every nontrivial divisor d of n, let Hd denote the unique subgroup
of Zn of order d and πn,d : Zn → Zn/Hd

∼= Zn/d the corresponding quotient map.
Then the modes of limited transposition in Zn associated with the stabilizer Hd are
exactly those of the form π−1

n,d(P ), where P is a primitive subset of Zn/d.

Return to Messiaen’s modes In the case n = 12 considered by Messiaen, direct
computation using Theorem 2 shows that ℓ12 = 15 and w12 = 5. It follows that
s12 = 5. Thus, we expect five modes of size six and five of size strictly greater than
six. All ten are listed in Figure 3, ordered first by the size of the stabilizer subgroup and
then by the size of the mode. All three modes absent from Messiaen’s list have size 6.
The first (IV) is a translation of the one identified by Street [13, Ex. 5(f), p. 819] and
has stabilizer of size 3. The remaining two (VI and VII) have stabilizer of size 2.

Generalization to finite abelian groups

The results in the preceding section can all be extended, in an appropriate sense, to the
setting of finite abelian groups. As before, a finite abelian group A acts by translation
on the set of its nonempty, proper subsets; moreover, any subset S ⊆ A is a disjoint
union of cosets of its stabilizer Stab(S). One then defines a mode to be an orbit for
this action; it is said to be of limited transposition if the stabilizer of any of its rep-
resentatives is nontrivial. The size and transposition length of a mode, along with the
term primitive, are defined as before. A strong Messiaen mode is a mode of limited
transposition of size strictly greater than |A|/2, and a weak Messiaen mode is one of
size exactly |A|/2. It is easy to show that the subsets of A with stabilizer H are in
bijective correspondence with the primitive subsets in A/H . The only things missing
are analogues of the Möbius function and totient function for abelian groups. These
are supplied by a construction of Louis Weisner.

Definition 1. ([18, pp.475,483]) A hierarchy is pair (S,≺), where S is a nonempty
set and ≺ is a relation on S satisfying:

1. For all a ∈ S, a ≺ a.
2. If a and b are elements of S such that a ≺ b and b ≺ a, then a = b.
3. If a, b, and c are elements of S such that a ≺ b and b ≺ c, then a ≺ c.
4. For all a, b ∈ S, there exists d ∈ S such that d ≺ a and d ≺ b; and such that if

c ∈ S satisfies c ≺ a and c ≺ b, then c ≺ d.
5. For all a, b ∈ S, there exists ℓ ∈ S such that a ≺ ℓ and b ≺ ℓ; and such that if

m ∈ S satisfies a ≺ m and b ≺ m, then ℓ ≺ m.
6. For every pair of elements a, b ∈ S, there are only finitely many x ∈ S such that

a ≺ x ≺ b.

A unit element of S is an element u ∈ S such that u ≺ a for all a ∈ S.

The prototype for this definition is the set of positive integers, where ≺ corresponds
to divisibility, i.e., a ≺ b if and only if a|b. The first three items require that (S,≺)
be a partially ordered set. The fourth and fifth items assert the existence of something
analogous to a greatest common divisor and least common multiple, respectively.
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Figure 3 Strong and weak Messiaen modes of limited transposition for n = 12. Mes-
siaen identified I, II, III, V, VIII, IX, and X as (respectively) his modes 1, 2, 3, 5, 6, 4,
and 7. Modes IV, VI, and VII do not appear in his classification.

Now let A be a finite abelian group. It is easy to see that the set SA of all subgroups
of A is a hierarchy under the relation of set inclusion. The first three conditions are
trivial; moreover, given subgroups H and K of A, the intersection H ∩K satisfies
the fourth condition and the sum H +K satisfies the fifth. The sixth condition fol-
lows directly from finiteness of A, and the unit element for this hierarchy is the trivial
subgroup.

The definition of the generalized Möbius function is then formulated as follows.
(Weisner actually works in a much more general setting; for simplicity, we provide
only the specialization to this case.) Given a positive integer m and subgroups H
and K of A with H ⊆ K, denote by Qm(H;K) the number of sets of m distinct
subgroups L1, . . . , Lm such that (i) for all i, Li is a proper subgroup of K, and (ii)
∩m

i=1Li = H . We then define the Möbius function (cf. [18, p.480]) thus:

µ(H;K) =

{
1 if H = K∑∞

m=1(−1)mQm(H;K) otherwise.
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In view of the sixth condition of Definition 1, the above sum is actually finite. The
analogue of Theorem 1 can then be formulated:

Theorem 3. [18, Theorem 13] Let A and B be abelian groups and f : SA → B a
function. Define g : SA → B by

g(K) =
∑

H∈SK

f(H).

Then

f(K) =
∑

H∈SK

µ(H;K)g(H).

(In both formulae, summation refers to the group operation on B.)

We now define the generalized totient function ϕ̃ by stipulating that its value on an
abelian group A be

ϕ̃(A) = |A|
∑

H∈SA

µ(1;H)

|H|
. (6)

If A = Zn, then ϕ̃(A) = ϕ(n). This definition, however, is intrinsically unsatisfying,
despite its resemblance to formula (1). Indeed, the formula (1) was derived from the
definition of the totient function, not the other way around! One might ask, then, if
there exists an “organic” definition of ϕ̃ from which (6) can be derived. This seems
unlikely, considering that ϕ̃(Z2 × Z2) = 0.

The generalization of Theorem 2 to the setting of finite abelian groups appears as
Theorem 4. Note, however, that the third item of Theorem 2 needs to be replaced by
the analogue of (4). In the situation of Theorem 2, A is a cyclic group of order n,
which has a unique element of order 2. This means that the even order subgroups of
A are in bijection with the subgroups of its (unique) subgroup of order n/2, allowing
us to proceed from (4) to (5). In general, an abelian group may have more than one
element of order 2, so the above reasoning does not apply.

Theorem 4. Let A be an abelian group with at least 2 elements. Let ℓA denote the
number of modes of limited transposition in A, sA the number of strong Messiaen
modes, and wA the number of weak Messiaen modes. Then

1. ℓA = wA + 2sA. If n is odd, then wA = 0.

2. ℓA =
1

|A|
∑

H∈SA

(2|H| − 2)
(
ϕ̃(A/H)− µ(1;A/H)

)
.

3. wA =
1

|A|
∑

H∈SA

β(H)

(
|H|
|H|/2

)(
ϕ̃(A/H)− µ(1;A/H)

)
,

where β(H) =

{
1 |H| even
0 |H| odd.

The proof of Theorem 4 follows that of Theorem 2, mutatis mutandis, using the
generalization of Möbius inversion articulated in Theorem 3.

It is natural to wonder if a mode of limited transposition has any musical meaning
in this more general context. It is well-known that every finite abelian group A is iso-
morphic to a direct product Zn1

× · · · × Znk
of cyclic groups. One might imagine an
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ensemble of k musical instruments, with the ith instrument playing notes within a sub-
division of the octave into ni equal parts. A subset of the form S = B1 × · · · × Bk,
where Bi ⊆ Zni

for each i, could be understood as a set of chords in which the ith
instrument is allowed to play notes within the subset Bi. It is harder to imagine what a
general subset of the direct product would “sound” like, as the choice of “permissible”
notes for one instrument would not be independent of those for the others. Needless to
say, this is a somewhat artificial interpretation. Theorem 4 is more likely a mathemat-
ical curiosity than something of serious interest to music theorists.
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