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Abstract

We study the vertex-connectivity and edge-connectivity of the zero-divisor
graph ΓR associated to a finite commutative ring R. We show that the edge-
connectivity of ΓR always coincides with the minimum degree, and that vertex-
connectivity also equals the minimum degree when R is nonlocal. When R is
local, we provide conditions for the equality of all three parameters to hold,
give examples showing that the vertex-connectivity can be much smaller than
minimum degree, and prove a general lower bound on the vertex-connectivity.

1 Introduction

Let R be a commutative ring with unit element 1 6= 0. The set of zero-divisors in

R does not in general possess a convenient algebraic structure; hence, non-algebraic

methods are often needed to study this set. One attempt in this direction involves the

so-called zero-divisor graph ΓR, whose definition was first given by Beck in [5] and later

adjusted slightly by Anderson and Livingston [2]. The vertices of ΓR are precisely the

nonzero zero-divisors of R, with two vertices adjacent if and only if the product of

the ring elements they represent is zero. The idea is that by studying combinatorial

properties of ΓR, one might hope to draw conclusions about the structure of the set

of zero-divisors in R. Since the paper citeal, considerable work has been done on this

topic; for details, see the recent survey articles [1] and [7].

One of the first results proved was that for any R, ΓR is connected, and in fact has

diameter at most 3 [2, Theorem 2.3]. A more refined combinatorial notion than con-

nectedness is that of connectivity. For a graph G, the vertex-connectivity, denoted

κ(G), is the size of the smallest subset of vertices whose removal renders the graph

disconnected or leaves a single vertex, while the edge-connectivity, denoted λ(G), is

the size of the smallest subset of edges whose removal renders the graph disconnected.

In general, connectivity of either type is rather difficult to compute; however, when

graphs have a lot of symmetry – as is the case with zero-divisor graphs – it is some-

times possible to perform calculations, or at least give meaningful bounds.
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The vertex connectivity of Γ(Zn), n ≥ 2 was studied by Aaron Lauve [8], who later

discovered a mistake in his proof of the key formula in Section 4. The present ar-

ticle started as a project to correct this mistake, but later developed into a more

comprehensive study of both the vertex- and edge-connectivity of Γ(R) for arbitrary

finite rings. An obvious starting point is the set of bounds κ(G) ≤ λ(G) ≤ δ(G)

(see Proposition 2.2), valid for any graph G; here δ(G) is the minimum degree of a

vertex in G. In this article, we show that for all finite rings R, λ(ΓR) = δ(ΓR), and

for nonlocal R, we also have κ(ΓR) = δ(ΓR). When R is local, however, κ(ΓR) is not

nearly as well-behaved. For example, if R is a principal ideal domain, we always have

κ(ΓR) = δ(ΓR); however, one can construct infinite families of rings for which κ(ΓR)

is of order δ(ΓR)3/4. We give more precise conditions under which κ(ΓR) = δ(ΓR)

holds, and show that for any R, κ(ΓR) must at least be of order δ(ΓR)1/3.

Problems related to the focus of the present article have been studied in the recent

literature. The structure of minimal vertex cuts in ΓR was studied in [6]; however,

that article does not investigate the size of such cuts, as is the focus of the present

article. Our results are of a distinctly different flavor and thus complement rather

than duplicate those of [6]. The papers [4] and [9] are more focused in scope, and

study graphs whose vertex-connectivity is 1.

The authors thank Miami University for supporting this research during the summer

of 2003. We would also like to express our gratitude to Aaron Lauve for introducing

this problem to us and for providing us with his work on the topic.

2 Preliminaries

Throughout this paper, all rings are finite and commutative with 1 6= 0, and all

graphs are finite, with no loops or multiple edges.

If R is a ring, we denote by Z(R) the set of zero-divisors in R.

Definition 2.1. Let R be a ring. The zero-divisor graph of R, denoted ΓR, is the

graph whose vertex set is the set Z(R)−{0}, and in which {x, y} is an edge if x and

y are distinct zero-divisors of R such that xy = 0.

By abuse of notation, we blur the distinction between elements of Z(R) − {0} and

elements of V (ΓR). For x ∈ Z(R) − {0} we denote by ann x the annihilator of x.

Hence, the degree of x (viewed as a vertex of ΓR) is |ann x− {0, x}|.

We also recall various conventions and definitions from graph theory; see [10] or any

reference on graph theory for further details. For a graph G, we denote by V (G) its
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vertex set and by E(G) its edge set. For a vertex v, we denote by NG(v) (or simply

N(v) if the context is clear) the set of neighbors of v in G. We denote by δ(G) the

minimum vertex degree in G.

If S ⊆ V (G), we write G− S to denote the graph with vertex set S̄ = V (G)− S and

edge set E(G) − {{x, y} : {x, y} ∩ S 6= ∅}. If T ⊆ E(G) is any subset, we denote

by G− T the graph with vertex set V (G) and edge set E(G)− T . A vertex cut is a

subset S ⊆ V (G) such that G − S is disconnected, and a disconnecting set of edges

of G is a subset T ⊆ E(G) such that the graph G − T is disconnected; an edge cut

is a disconnecting set of edges which is minimal (with respect to inclusion). Writing

[A,B] for the set of edges in G with one endpoint in each of the subsets A, B of

V (G), it is easily shown (cf. [10, Remark 4.1.8]) that any edge cut in G must be of

the form [S, S̄] for some subset S ⊆ V (G). The vertex-connectivity of G, denoted

κ(G), is the size of smallest set S ⊆ V (G) such that S is a vertex cut or G − S has

only one vertex. Similarly, the edge-connectivity of G, denoted λ(G), is the size of the

smallest edge cut in G. For convenience, we write κR (respectively, λR, δR) instead

of κ(ΓR) (respectively, λ(ΓR), δ(ΓR)). A well-known result relating these parameters

is the following statement, due to Whitney.

Proposition 2.2. ([10, Theorem 4.1.9]) For any graph G, κ(G) ≤ λ(G) ≤ δ(G).

3 Results

Theorem 3.1. Let R be a finite nonlocal ring. Then κR = λR = δR.

Proof.

By the structure theorem for Artin rings, R ∼= R1 × · · · × Rk, where k ≥ 2 and each

Ri is a finite local ring. In light of Proposition 2.2, it suffices to show κR ≥ δR. To

this end, let S ⊆ V (ΓR) be a subset with |S| < δR; we will show that H = ΓR − S is

connected. For i, 1 ≤ i ≤ k, define

Ci = {(0, . . . , 0, ai, 0, . . . , 0) ∈ R1 × · · · ×Rk : ai ∈ Z(Ri)− {0}}.

We claim that every vertex in H is adjacent to a vertex in Ci ∩ V (H) for some

1 ≤ i ≤ k. Since vertices of Ci are clearly adjacent to vertices of Cj when i 6= j, it will

then follow that H is connected. Toward this goal, suppose b = (b1, . . . , bk) ∈ V (H),

and fix i, 1 ≤ i ≤ k such that bi 6= 0. If we define b′ = (1, . . . , 1, bi, 1, . . . , 1), then

clearly NΓR
(b′) ⊆ Ci. In particular, this implies |Ci| ≥ δ > |S|, so H must contain

some vertex v ∈ NΓR
(b′). Since NΓR

(b) ⊇ NΓR
(b′), we see that v ∈ NΓR

(b) ∩ Ci, as

desired.
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From this point on, R will denote a finite local ring with maximal ideal m. Since R

is Artinian, it follows from Nakayama’s Lemma (cf. [3, Proposition 8.6]) that mn = 0

for some positive integer n. We will reserve the symbol r for the smallest n > 0

satisfying this property. If r = 1, then R is a field and ΓR is the empty graph. If

r = 2, then ΓR is a complete graph; so clearly κR = λR = δR = |m| − 2. For the

balance of the article, we assume r ≥ 3, so in particular m2 6= 0. Since mr−1 ⊆ ann m,

it follows immediately that AR = ann m− {0} is nonempty, and also that ΓR is not

complete. Viewed as a subset of V (ΓR), AR is a dominating set in ΓR. Clearly any

vertex cut in ΓR must contain AR; thus, writing αR = |AR| and using Proposition

2.2, we have the following elementary bounds:

αR ≤ κR ≤ λR ≤ δR. (1)

The following condition is important in that it presence forces all the inequalities in

(1) to be equalities, but its absence typically has the opposite effect.

There exists x ∈ m such that ann x = ann m. (2)

Proposition 3.2. Suppose condition (2) holds. Then αR = κR = λR = δR.

Proof.

If x2 = 0, then x ∈ ann x = ann m. Thus, m = ann x = ann m, and so m2 = 0.

Hence, we may assume x2 6= 0. In this case, δR ≤ deg (x) = |ann x − {x, 0}| =

|ann x− {0}| = |ann m− {0}| = αR.

If R is a principal ideal ring, condition (2) is certainly satisfied; therefore, we have:

Corollary 3.3. Let p be a prime number and n ≥ 3. Then κ(Z/pnZ) = λ(Z/pnZ) =

p− 1.

It turns out that for local rings, the edge-connectivity is much better behaved than

the vertex-connectivity. Recalling that vertices of AR are dominant in ΓR, the deter-

mination of λR is strictly graph-theoretic and follows immediately from the following

easily verified fact:

Proposition 3.4. Let G be a graph with a dominant vertex. Then λ(G) = δ(G).
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Proof.

Choose S ⊆ V (ΓR) such that T = [S, S̄] ⊆ E(ΓR) is an edge cut. We may assume

without loss of generality that S̄ contains a dominant vertex v. Since v is adjacent

to all vertices of S, we must have |T | ≥ |S|. On the other hand, every vertex in S

has at least δ − |S| + 1 neighbors in S̄; so δ ≥ |T | ≥ |S|(δ − |S| − 1). Rearranging

the inequality |S|(δ − |S| + 1) ≤ δ gives δ(|S| − 1) ≤ |S|(|S| − 1). If |S| > 1, then

cancellation gives δ ≤ |S| and so |S| = |T | = δ. If |S| = 1, then all edges incident at

the sole vertex in S must be in T , so |T | = δ in this case also.

Corollary 3.5. Let R be a local ring with m2 6= 0. Then λR = δR.

We now turn our attention to the vertex-connectivity of ΓR. It is natural to ask how

tight the bounds αR ≤ κR ≤ δR are. In the absence of condition (2), the lower bound

is usually not met.

Proposition 3.6. Let R be a local ring with r ≥ 4 such that condition (2) fails. Then

κR > αR.

Proof.

First suppose r ≥ 5. Any vertex cut must contain AR, so it suffices to show that

H = ΓR − AR is connected. Because mr−1 = mr−2m 6= 0, there exists some x ∈ mr−2

such that x 6∈ AR. Moreover, x is a finite sum of products of the form uv, where

u ∈ mr−3 and v ∈ m. Since x 6= 0 and AR ∪ {0} is an ideal (hence closed under

addition), at least one of these products must not be in AR. Thus, we may assume

without loss of generality that x = uv, where u ∈ mr−3 and v ∈ m. Clearly u and v

are also vertices of H, and because r ≥ 5, ux ∈ m2r−5 ⊆ mr = 0, so u is adjacent to

x in H.

We claim that there is a path in H from every y ∈ V (H) to x. If y = u or y = x,

this is clear, so assume otherwise. Since condition (2) fails, y has a neighbor z in

H, so yz = 0. Now consider the product zu. If zu = 0, then y, z, u, x is a path. If

zu 6= 0 but zu ∈ AR, then zx = (zu)v = 0 and y, z, x is a path. Finally, if zu 6= 0

and zu 6∈ AR, then zu is a vertex of H; moreover, y(zu) = 0 and x(zu) = (xu)z = 0,

so y, zu, x is a path.

Now suppose r = 4. Then m4 = 0 but m3 6= 0, so there exists x ∈ m2 such that x is

a vertex of H = ΓR −AR. It suffices to show that there is a path from any vertex of

H to x. To this end, let y be a vertex of H distinct from x. Since condition (2) fails,

y has a neighbor z in H, i.e. yz = 0. If zm ⊆ AR, then zm2 = 0 and z is adjacent to
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x. If zm 6⊆ AR, then there exists w ∈ m such that zw is a vertex of H. Now zw is a

neighbor of y; however, zw ∈ m2, so it is also a neighbor of x.

Remark.

The hypothesis r ≥ 4 in Proposition 3.6 is necessary: when r = 3, there exist rings

R not satisfying condition (2) for which κR = αR and others for which κR > αR.

As an example of the former, let F2 be the field with two elements and consider R =
F2[x, y]

(x2, y2)
. By abuse of notation, we will use elements of F2[x, y] to describe the cosets

they represent in R. Then m = (x, y) has eight elements and m2 = ann m = {0, xy}.
Thus, ΓR has seven vertices, with xy a dominant vertex; moreover, ΓR − {xy} is a

graph on six vertices with three connected components {x, x + xy}, {y, y + xy} and

{x + y, x + y + xy}, so κR = αR = 1. Note also that for any t ∈ R, ann t contains

(t). Since (t) has at least 4 elements for any t 6= 0, there is no way for the equality

ann t = ann m to hold for any t ∈ V (ΓR). Hence, condition (2) necessarily fails.

As an example of the latter, consider R =
F2[x, y, z, w]

(x2, y2, z2, w2, xy, yz, zw,wx)
. It is easily

seen that R is a local ring satisfying t2 = 0 for all t ∈ R, whose maximal ideal

m = (x, y, z, w) satisfies m3 = 0, m2 6= 0. Moreover, ann m = (xz, yw), so αR = 3. As

in the previous example, t ∈ ann t for all t ∈ R, so it is easily seen that condition (2)

is not satisfied. Now let H = ΓR −AR; we will show that H is connected, and hence

that κR > 3. Observe first that every vertex of H is of the form c1x+c2y+c3z+c4w+

c5xz + c6yw, where the ci are elements of F2, and c1, . . . , c4 are not all 0. Evidently

each such vertex is adjacent to c1x + c2y + c3z + c4w. Since x, y, z, w, x is a cycle in

H, it will suffice (to show that H is connected) to construct a path from any vertex

of the form c1x + c2y + c3z + c4w (with not all ci equal to 0) to one of the vertices

of the abovementioned cycle. If v1, v2 are distinct elements of {x, y, z, w} which are

adjacent in H, then v1 +v2 is adjacent to v1. If v1, v2 are not adjacent, then choose v3

from this set, distinct from v1 and v2; then v3 will be adjacent to v1 + v2. If v1, v2, v3

are distinct elements of {x, y, z, w}, then we may assume without loss of generality

that v2 is adjacent to both v1 and v3. It follows that v1 + v2 + v3 is adjacent to v2.

Finally, x+y+ z+w is adjacent to x+ z. Thus H is connected, and so κR > 3 = αR.

The next family of examples shows that both bounds αR ≤ κR ≤ δR can be quite

loose.
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Proposition 3.7. Let F be a field of order f = 2s and R =
F [x, y, z]

(x2, y2, z2)
. Then

αR = f − 1, κR = f 3 − 1, and δR = f 4 − 2.

Proof.

Observe that R is a local ring with maximal ideal m = (x, y, z) such that t2 = 0 for

all t ∈ R. Moreover, m2 = (xy, xz, yz), m3 = (xyz), and m4 = 0.

Clearly R is generated (as an F -vector space) by {1, x, y, z, xy, xz, yz, xyz}; from this

description, it is easily seen that |R| = f 8, |m| = f 7, |m2| = f 4, and |m3| = f .

Also, ann m = m3, so αR = f − 1. Now since t2 = 0 for all t ∈ R, it follows that

ann t ⊇ (t); because |ann t| · |(t)| = |R|, we have |ann t| ≥ |R|1/2 = f 4 for all t ∈ R.

Direct computation shows that ann x = (x), so x is a vertex in ΓR of minimum degree

δR = f 4 − 2.

Let S = (ann x ∩ m2) − {0}. Also, any element in (x) − S − {0} is associate to x

and hence has the same neighborhood in ΓR; in fact, (x)− S − {0} is a clique and a

connected component of ΓR − S. Thus there is no path in ΓR − S from x to y, and

so κR ≤ |S| = f 3 − 1.

Now suppose T ⊆ V (ΓR) is a set of vertices such that |T | < f 3 − 1. Given t ∈ m,

consider the multiplication by t map m2 → tm2. This is an R-module homomorphism

whose kernel is ann t ∩ m2; hence |m3| ≥ |tm2| = |m2|
|ann t ∩m2|

and so |ann t ∩m2| ≥

|m2|
|m3|

= f 3. Taking into account that 0 and possibly t itself are elements of ann t, this

implies that every vertex of H = ΓR − T has a neighbor (in H) lying in m2. To show

that H is connected, let a and b be vertices of H. Then a has a neighbor c ∈ m2 in

H and b has a neighbor d ∈ m2 in H. Now cd ∈ m4 = 0, so c and d are adjacent in

H, proving that there exists a path from a to b.

This shows that κR = f 3 − 1.

In the example of Proposition 3.7, κR is roughly
1

|F |
δR, so by taking F to be arbitrarily

large, we see that there is no hope for a general upper bound on κR which is linear

in δR; in fact, in this family, κR is roughly δ
3/4
R . It is natural, then, to ask for the

maximum value of a, 0 < a ≤ 3/4, such that κR can be bounded below (for all finite

rings R) by a function of order δa
R. As a first step in this direction, we offer:

Proposition 3.8. Let R be a finite ring. Then κR ≥
(
δR
2

)1/3

− 1√
3

.
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The proof relies crucially on the following observation:

Lemma 3.9. Let R be a ring and S a vertex cut of ΓR such that V (G) is the disjoint

union of two nonempty sets A and B with no edges between A and B. Suppose

|S| < δR. If a ∈ A and b ∈ B, then ab ∈ S, |ann a| ≥ |B|
|S|

and |ann b| ≥ |A|
|S|

.

Proof.

The hypothesis |S| < δR implies that a has some neighbor x ∈ A and that b has

some neighbor y ∈ B. Then ab 6= 0, but ab is a neighbor of both x ∈ A and y ∈ B;

thus, ab ∈ S. Now let B = {b1, . . . , bn}. Since each of the products ab1, . . . , abn is

an element of S, some element s ∈ S appears at least
|B|
|S|

times in this list; without

loss of generality, we may assume that ab1 = . . . = abk = s, where k ≥ |B|
|S|

. Thus,

0, b2 − b1, . . . , bk − b1 are distinct elements of ann a and hence |ann a| ≥ k ≥ |B|
|S|

.

The proof of the remaining assertion is similar.

Proof of Proposition 3.8.

If κR = δ, there is nothing to prove, so assume κR < δ and let S ⊆ V (ΓR) = m−{0}
be a minimal vertex cut. Partition the vertices of H = ΓR − S into two disjoint

nonempty sets A and B such that there are no edges between A and B; we may

assume without loss of generality that B is the larger of these two sets, i.e.

|A| ≤ |m| − |S|
2

≤ |B|.

Now if x ∈ A and y ∈ B, Lemma 3.9 implies that H contains no vertices from

ann x ∩ ann y. Since the zero element is not a vertex of ΓR, we have, again using

Lemma 3.9:

|S| ≥ |ann x ∩ ann y| − 1 =
|ann x||ann y|
|ann x+ ann y|

− 1 ≥ |B|/|S| · |A|/|S|
|m|

− 1.

Thus,

|S|3 ≥ |A||B|
|m|

− |S|2 ≥ |A| |m| − |S|
2|m|

− |S|2 =
|A|
2
− |A||S|
|m|

− |S|2 ≥ |A|
2
− |S|

2
− |S|2.

However, the neighbors of x ∈ A in ΓR are all members of A∪S. Thus, |A|+|S| ≥ δ+1

and so, continuing the calculation from above, we have:

|S|3 + |S|2 +
|S|
2
≥ |A|

2
− 1 ≥ δ − |S| − 1

2
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which, upon rearrangement, gives

2(|S|3 + |S|2 + |S|+ 1

2
) ≥ δ.

Hence, 2(|S|+ 1√
3

)3 ≥ δ, and rearranging the inequality gives the desired result.
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